Monitoring on Fermentation of Persimmon Vinegar from Persimmon Peel

Suk-Kyung Kim, Gee-Dong Lee1 and Shin-Kyo Chung*
Department of Food Science and Technology, Kyungpook National University
1Department of Fermented Food, Kyungbuk College of Science

In order to investigate utilization possibility of persimmon peel as a source of vinegar, we had been examined the alcohol and acetic acid fermentations of persimmon peel. In the first stage, alcohol fermentation, alcohol content was maximum value (8.22%) in 12.43 mL/g of added water; 12.41 Brix of initial sugar content and 48.05 hr of fermentation time. Acidity was minimum value (0.30%) in 12.18 mL/g of added water; 13.72 Brix of initial sugar content and 46.22 hr of fermentation time. In the second stage, acetic acid fermentation, acidity was maximum value (6.40%) in 2.02% of initial acidity, 67.98 rpm of agitation rate and 6.94 day of fermentation time. Browning color was minimum value in 1.50% of initial acidity, 150.0 rpm of agitation rate and 6.0 day of fermentation time. To manufacture persimmon vinegar using persimmon peel, in the first stage, optimal alcohol fermentation conditions was 12 mL/g in added water, 12.41 Brix in initial sugar concentration and 48 hr in fermentation time. In the second stage, optimal acetic acid fermentation conditions was 1.8% in initial acidity, 70 rpm in agitation rate and 6 day in fermentation time using Acetobacter sp. PA97.

Key words: persimmon peel, persimmon vinegar, alcohol fermentation, acetic acid fermentation, monitoring

서 론

감(Diospyros kaki)는 우리나라의 남부지역을 중심으로 남은지역에서 생산되고, 포도당, 과당 등의 당질과 비타민 A와 C가 풍부한 암알리성 식품이며, 사과, 포도 등이 더불어 우리나라의 3대 과일중 하나이다. 감은 대청의 수축과 분비액의 쏠리, 헤지 등의 과일에 효과가 있으며, 다른 과일과 달리 신맛이 없고 탄닌의 수질작용에 의해 맛을 끌게 하거나 지혈 등의 약리작용을 나타내어 예로부터 많이 식용되었다. 그러나 이러한 영양적 특성에도 불구하고 다른 과일에 비하여 그 이용성이 제한되어 왔으며, 감을 이용한 가공식품으로는 감치조, 견절 등이 있지만 감의 가공상품화가 부족한 상태이며, 감의 이용이 증대를 위한 다양한 가공식품의 개발에 관한 연구가 점점이 요구된다. 최근에는 감을 이용한 식초, 식초음료 등이 개발되어 다양한 소비계층을 대상으로 시판되고 있다."". 우리나라의 감 제조법인은 전제감 제조법인으로 28,812 ha 중 쌀은 6,249 ha 정도로 저지하며, 특히 경상북도 상주를 포함하여 경북지역의 쌀은 8,694 ha이다. 쌀은 8,694 ha의 고급으로 이용되고 있으며, 그로 인해 발생하는 감질질 밀생장도 많다.". Moon 등은 감의 콜리티아의 수분, 단백질, 탄수화물 등의 영양소를 조사하였으며, Lee와 Kim는 감과류로부터 식이섬유를 분리, 정제하여 포도당, 당 증산 및 카드뮴 역할 효과를 나타내었다고 보고 하였다. 이러한 미량원 감질질을 이용하여 새로운 가공상품의 개발로 인한 환경친화적 상품 개발의 일환으로 감질질조조를 제조하였다. 식초에 대한 연구로는 Jeong 등은 감치조, Lee 등14의 감처리조, Oh 등15의 배처리조, Ko 등16의 마늘처리조, Park 등17의 양처리조, Kim 등18의 우화처리 조, 등 다양한 식품 소재를 가지고 식초조제 조건에 대한 연구들이 이루어져 있음을 알 수 있다. 전제에는 식초조를 단순하게 조제용으로 이용하여 왔으나 도달하는 식초조료(마른음료 및 스낵류 등)에 기능성 소재로 활용되고 있는 실정이다. 본 연구는 감질질을 이용함으로써 감질질의 가공작용성을 높이고 감질질을 이용한 양조식초를 제조하고자 반응표면분석에 의한 감질질의 알리트 및 초산발효 특성을 모니터링하고 발
효소전을 좌직화 하였다.

재료 및 방법

재료
본 실험에 사용된 감귤은 상주군 일대에서 생산되어 공
감으로 가공한 후 미활용한 감귤을 조제하여 사용하였다.
건조된 감귤의 수분 함량은 7.8%였으며, 색차계를 측정한
결과 L, a, b값은 각각 66.53, 10.44, 29.66을 나타내었으며,
감귤무게의 10배 가수 후 측정한 당도는 4.8ºBrix로 나타
내었다.

주요 및 종조
주요 및 종조는 Jeong 등(15)의 방법에 준해 배양하여 사용
하였다. 즉, 건조된 감귤의 g당 10배의 물을 가수하여 불
린 후 적층한 연예에YPDyeast extract 1%, peptone 2%,
dextrose 2%, agar 2%) 배지로 생육시킨 Saccharomyces
kluveri DJ 97를 접종하여 28°C에서 38 hr 배양한 후 10%(v/ v)의 주도를 사용하였다. 초산발효는 Acetobacter sp. PA97을
감귤알 발효한 (감귤무게의 10배 가수 후 2회 부양(설
당용량)한 다음 Saccharomyces kluveri DJ 97를 이용하여 48 hr 발효시킨 감귤알 발효한액에 점증시켜 전장배양기에
서 30°C 및 200 rpm에서 발효시켜 산이 4.5%인 때 종조로
사용하였다.

실험계획
감귤조 제조를 위하여 건조된 감귤을 과제한 후 수분
감귤함으로 가수 및 가당한 다음 각각 10%(v/v)의 주도를
접종하여 수분된 발효시간으로 알활활발써 화학적 분석
료로 사용하였다. 1단계 알활활발효리는 가수당(X: 7, 9, 11,
13, 15 mL/g), 초기당량화(X: 12, 13, 14, 15, 16ºBrix) 및
발효시간(X: 46, 48, 50, 52, 54 hr) 3개의 발효조건이 5수준
(2, -1, 0, 1, 2)으로 부호화하여 각각 설정된 16개의 조건
으로 실험을 행하였다. 각각의 실험조건으로 설정된 16가지
실험계획에 따라 감귤갈 100 g에 해당하는 가수당을 첨가한
후 발효를 이용하여 초기당량으로 조건한 후 10% 주도를
접종하여 니스락용기(1 L)에 달은 후 28°C에서 보관하면
서 설정된 발효조건으로 발효하였다. 초산발효는 알활활발효가
끝난 발효액을 온과한 후 종조를 10%(v/v) 접종한 후 조건
별로 발효시킨 알활활 발효, 초산발효 및 당량을 측정하기 위
한 분석시료로 사용하였다. 2단계 초산발효조건은 초기당량
(X), 고당속도(X) 및 발효시간(X)으로, 설정하여 각각 16개
의 실험조건으로 실험을 행하였다(13, 14).

알활활 발효
발효조건에 따라 발효시킨 발효액 100 mL를 취하여 알활
발효응기(Alcoest 0362392, J.P. Select Co., Spain)에서 알활
오 증류한 후 주성분을 이용하여 알활활활 발효량을 측정하였다.

총산
총산은 0.1 N NaOH용액으로 중화적정하여 초산발효로
환산하였다(15).

갈색도 측정
갈색도는 일정량의 시료를 취하여 각각 UV-Spectrophotometer(Shimadzu UV-1601 PC, Japan)를 이용하여 각각 420 nm
에서 흡광도를 측정하였다(16).

결과 및 고찰
알활활 발효
곡간을 가공한 후 미활용 자원으로 생산되는 감귤을 이

| Table 1. Experimental data for alcohol contents, acidity and residual sugar concentration under different conditions of added water, initial sugar concentration and fermentation time for alcohol fermentation of persimmon peel |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|
| Exp. No. | Added water (mL/g) | Initial sugar conc. (ºBrix) | Fermentation time (hr) | Alcohol content (%) | Acidity (%) | Residual sugar conc. (ºBrix) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1 | 13 | 15 | 52 | 7.6 | 0.33 | 6.0 |
| 2 | 13 | 15 | 48 | 7.0 | 0.32 | 6.0 |
| 3 | 13 | 13 | 52 | 7.6 | 0.31 | 4.0 |
| 4 | 13 | 13 | 48 | 8.0 | 0.30 | 4.0 |
| 5 | 9 | 15 | 52 | 7.5 | 0.36 | 5.0 |
| 6 | 9 | 15 | 48 | 7.4 | 0.35 | 4.0 |
| 7 | 9 | 13 | 52 | 6.4 | 0.37 | 4.0 |
| 8 | 9 | 13 | 48 | 7.8 | 0.36 | 4.0 |
| 9 | 11 | 14 | 50 | 7.1 | 0.32 | 5.0 |
| 10 | 11 | 14 | 50 | 7.1 | 0.32 | 5.0 |
| 11 | 7 | 14 | 50 | 7.0 | 0.42 | 5.0 |
| 12 | 15 | 14 | 46 | 7.6 | 0.36 | 4.0 |
| 13 | 11 | 12 | 50 | 7.4 | 0.36 | 4.0 |
| 14 | 11 | 16 | 50 | 7.8 | 0.36 | 6.2 |
| 15 | 11 | 14 | 46 | 7.2 | 0.30 | 4.0 |
| 16 | 11 | 14 | 54 | 7.4 | 0.36 | 4.0 |
응하여 감시조를 제조하고자 1차적으로 알콜발효에 대한 이
화학적 특성을 모니터링하였다. 감염현상을 이용하여 알콜 발
효시 주요한 변수인 가수수(7~15 mL/g), 초기 당량완(12~16
'Brix) 및 발효시간(46~54 hr)를 달리면서 설정한 결과 Table
1과 같은 실험을 일으켰다.
알콜발효은 6.4~8.0%의 값을 나타내었으며, 알콜발효에 대
한 반응표면 회귀모델 결과 회귀식은 Table 2에 나타내었다.
1차 알콜발효시 세가지 발효조건(가수수, 초기 당량완 및 발
효시간)에 따른 알콜발효의 R²는 0.8866이고 유의성은 5%
이내의 유의수준에서 인정되었다. 알콜발효의 변화에 가장
크게 영향을 미치는 인자는 초기 당량완이었으며, 다음으로
반응시간, 가수수 순으로 나타났다(Table 3). 이는 감시조의
제조조건에서 알콜발효에 대한 발효조건의 영향은 원료 당
도의 영향을 주로 받고 있었으며, 교반속도와 발효시간은 크
즉, 감염현상을 이용하여 알콜발효시 중요한 발효조건은 초기
당량완을 알 수 있었다. 알콜발효에 가장 낮은 영향인치로
 나타난발효시간을 48 hr로 고정한 후 3차원 반응표면을
그려 본 결과 Fig. 1과 같은 영향의 형태를 나타내었다.
알콜발효은 4차관 감염현상에 가속되는 물이 많이 증가함
록, 초기 당량을 증가할수록 증가하는 경향을 나타내었다. 최
적 알콜발효 조건은 가수수 12.68/mL, 초기 당량완이
12.41'Brix 및 발효시간이 48.05 hr이었다(Table 4). 감염
현상이 낮은 당을 함유하고 있으나 발효를 이용하여 보단 한 후
알콜발효를 시켰으며 본래 점착된 당보다 높은 알콜수소
융합을 나타낸 경우도 있는데 이는 감염현상 자체에 유함되어 있
는 전술과 같은 고온화 당이 알콜발효에 이용되었기 때문인
것으로 사료된다.
1단계 알칼리발효 중 총도변화를 측정하여 회귀식으로 나타낸 결과는 Table 2와 같으며, R는 0.9149이고, 유의성은 5% 이내의 유의수준에서 인정되었다. 산도는 가수량이 발효시간 이나 초기달항함량보다 더 중요한 요인으로 나타났다(Table 3). 최소의 산도를 나타낸 조건은 가수량이 12.18 mL/g, 초기 달항함량이 13.72 Brix 및 발효시간이 46.22시간이었다(Table 4). 장당의 함량에 대한 회귀식 결과는 0.80167이고, 유의성은 인정되지 않았다(Table 2). 장당은 초기달항함량이 발효시간 및 가수량보다 더 큰 변수요인으로 나타났으며, 장당이 최소의 함량을 나타낸 조건은 가수량이 13.07 mL/g, 초기 달항함량이 12.61 Brix 및 발효시간이 52.00시간이었다. 이성의 결과로 미루어 볼 때 알칼리발효의 농도 산도의 함양이 적은 최적 알칼리 발효조건은 가수량을 12 mL/g, 초기달항함량은 12.18 Brix 및 발효시간을 48.48으로 설정하는 것이 적합하였다. 즉, 최적 알칼리발효조건으로 알칼리에 가수 및 가당하여 알칼리발효함으로서 감식초를 제조하기 위해 충분한 알칼리발효가 일어날 수 있었다.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Initial acidity (%)</th>
<th>Agitation rate (rpm)</th>
<th>Fermentation time (day)</th>
<th>Acidity (%)</th>
<th>Alcohol content (%)</th>
<th>Browning color intensity (O.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>200</td>
<td>7</td>
<td>4.68</td>
<td>0.8</td>
<td>3.600</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>200</td>
<td>5</td>
<td>3.78</td>
<td>4.0</td>
<td>2.005</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>100</td>
<td>7</td>
<td>5.76</td>
<td>0.8</td>
<td>4.100</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>200</td>
<td>5</td>
<td>4.68</td>
<td>1.0</td>
<td>2.150</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>200</td>
<td>7</td>
<td>4.16</td>
<td>0.6</td>
<td>10.800</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>100</td>
<td>5</td>
<td>3.72</td>
<td>2.0</td>
<td>2.737</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>100</td>
<td>7</td>
<td>4.12</td>
<td>0.0</td>
<td>12.300</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
<td>200</td>
<td>5</td>
<td>3.52</td>
<td>2.8</td>
<td>3.184</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>150</td>
<td>6</td>
<td>5.20</td>
<td>3.0</td>
<td>3.656</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>150</td>
<td>6</td>
<td>2.46</td>
<td>3.4</td>
<td>20.100</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>150</td>
<td>6</td>
<td>3.60</td>
<td>2.8</td>
<td>40.500</td>
</tr>
<tr>
<td>12</td>
<td>2.5</td>
<td>150</td>
<td>6</td>
<td>5.70</td>
<td>0.0</td>
<td>9.180</td>
</tr>
<tr>
<td>13</td>
<td>1.5</td>
<td>50</td>
<td>6</td>
<td>3.28</td>
<td>1.2</td>
<td>5.990</td>
</tr>
<tr>
<td>14</td>
<td>1.5</td>
<td>250</td>
<td>6</td>
<td>1.74</td>
<td>4.0</td>
<td>2.500</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>150</td>
<td>4</td>
<td>3.84</td>
<td>1.6</td>
<td>3.990</td>
</tr>
</tbody>
</table>

| Table 4. Predicted levels of optimum conditions for alcohol fermentation of persimmon peel by the ridge analysis | Table 5. Experimental data for acidity, alcohol contents and browning color intensity under different conditions of initial acidity, agitation rate and fermentation time for acetic acid fermentation of persimmon wine |

<table>
<thead>
<tr>
<th>Responses</th>
<th>Added water (mL/g)</th>
<th>Initial sugar concentration ('Brix)</th>
<th>Fermentation time (hr)</th>
<th>Estimated responses</th>
<th>Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol content (%)</td>
<td>12.68</td>
<td>12.38</td>
<td>48.05</td>
<td>8.22 (Max.)</td>
<td>Saddle point</td>
</tr>
<tr>
<td>Acidity (%)</td>
<td>12.18</td>
<td>13.72</td>
<td>46.22</td>
<td>0.30 (Min.)</td>
<td>Minimum</td>
</tr>
<tr>
<td>Residual sugar concentration ('Brix)</td>
<td>13.07</td>
<td>12.61</td>
<td>50.00</td>
<td>3.22 (Min.)</td>
<td>Saddle point</td>
</tr>
</tbody>
</table>

조산발효

감염을 이용하여 최적의 이학적 특성을 지닌 감식초를 제조하기 위해 1단계에서 알칼리발효 조건을 설정한 결과 가수량이 12 mL/g, 초기 달항함량이 12'Brix 및 발효시간이 48hr로 나타났으며, 이러한 조건으로 알칼리발효한 감염발효액(알칼리 함량: 7.2%)을 조산발효에 사용하였다. 미활성화된 감염을 이용하여 저당가 공정품을 개발함과 동시에 농산물의 배부가가치화를 위해 감식초를 제조하고자 16개 및 실험조건에 의한 조산발효 실험 결과는 Table 5와 같았다.

조산발효의 최적 조건을 설정하고자 초기산도, 교반속도 및 발효시간에 따른 알칼리 및 조산발효의 변화를 측정하였다. 2단계 조산발효에서 조산발효(0.5~2.5%), 교반속도(50~250 rpm) 및 발효시간(4~8일)에 따른 조산도의 회귀식을 구한 결과 Table 6에 같은 결과를 나타내었으며, 각각 16개 조건에 따른 조산도의 R는 0.9195이고 유의성은 1% 이내의 유의수준에서 인정되었다. 조산발효도의 총산은 발효시간에 가장 많은 영향을 받았으며, 조산발효와 교반속도의 순으로 나타났다(Table 8). 이는 Lee 등이 감식초 재료주 산도에 대한 조산발효조건의 영향은 발효시간이 주요 영향을 미치고 있었다는 보고와 일치하는 경향이었다. 또한 Jeong 등이 발효를 이용한 석초제조주 석산은 발효시간에 많은 영향을 받았다는 결과와 일치하는 경향을 나타내었다. 최대 총산도를 나타내는 조건은 조산발효가 191%, 발효시간이 6.53 day 및 교반속도가 63.09 rpm일 때였다. Koo 등이 마늘식초 제조공정을 위한 최적발효조건을 설정한 결과 조산발효는 1%로 보고하였는데, 감염을 이용한 감식초의 조산발효에서 최대 총산도에 대한 조산발효의 영향은 좀 더 높은 경향을
Table 6. Polynomial equations calculated by RSM program for acetic acid fermentation of persimmon wine

<table>
<thead>
<tr>
<th>Responses</th>
<th>Polynomial equation</th>
<th>R^2</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity (%)</td>
<td>$Y = -27.7275 + 7.9475X_1 + 0.039575X_1^2 + 7.618750X_2 - 2.17X_1^2 - 0.01210X_2X_1$</td>
<td>0.9195</td>
<td>0.0113</td>
</tr>
<tr>
<td>Alcohol content (%)</td>
<td>$Y = 24.212500 - 12.75000X_1 + 0.005250X_2 - 2.937500X_1^2 + 0.0200000X_2^2$</td>
<td>0.7427</td>
<td>0.2193</td>
</tr>
<tr>
<td>Browning color intensity (O.D.)</td>
<td>$Y = 21.979393 - 58.220875X_1 - 0.114906X_2 + 7.986062X_3^2 + 26.380000X_3^2$</td>
<td>0.7458</td>
<td>0.2136</td>
</tr>
</tbody>
</table>

X_1: Initial acidity (%), X_2: Agitation rate (rpm), X_3: Fermentation time (day).

Table 7. Analysis of variables for regression model of acidity, alcohol content and browning color intensity in acetic acid fermentation of persimmon wine

<table>
<thead>
<tr>
<th>Fermentation conditions</th>
<th>Acidity (%)</th>
<th>Alcohol content (%)</th>
<th>Browning color intensity (O.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial acidity (%)</td>
<td>7.705***</td>
<td>1.109</td>
<td>3.118*</td>
</tr>
<tr>
<td>Agitation rate (rpm)</td>
<td>3.841*</td>
<td>1.496</td>
<td>0.0893</td>
</tr>
<tr>
<td>Fermentation time (day)</td>
<td>9.415***</td>
<td>2.403</td>
<td>0.245</td>
</tr>
</tbody>
</table>

*Significant at 10% level, **Significant at 5% level, ***Significant at 1% level.

Table 8. Predicted levels of optimum conditions for acetic acid fermentation of persimmon vinegar by the ridge analysis

<table>
<thead>
<tr>
<th>Responses</th>
<th>Initial acidity (%)</th>
<th>Agitation rate (rpm)</th>
<th>Fermentation time (day)</th>
<th>Estimated responses</th>
<th>Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity (%)</td>
<td>1.91</td>
<td>63.09</td>
<td>6.52</td>
<td>6.40 (Max.)</td>
<td>Saddle point</td>
</tr>
<tr>
<td>Alcohol content (%)</td>
<td>1.73</td>
<td>91.58</td>
<td>6.60</td>
<td>0.60 (Min.)</td>
<td>Saddle point</td>
</tr>
<tr>
<td>Browning color intensity (O.D.)</td>
<td>1.50</td>
<td>150.00</td>
<td>6.00</td>
<td>1.37 (Min.)</td>
<td>Saddle point</td>
</tr>
</tbody>
</table>

Fig. 2. Contour map and response surface for acidity in acetic acid fermentation using persimmon wine at constant values (acidity: 0.04-1.17, 2.31-3.44, 4.57-5.71 %) as a function of initial acidity and fermentation time at agitation rate of 70 rpm.
감점법을 이용한 감식초 발효조건 모니터링

자료

조산발효에서 16가지 실험조건에 대한 견류알콜을 측정한 결과 R는 0.7427이었고, 세망의 R은 0.5244, 탑도의 R는 0.7965 및 입력도의 R은 0.7458로 나타났다(Table 6). 조산 발효시 최적의 견류알콜발효를 나타낸 조건은 초기산도가 1.73%, 교반산도가 91.58 ppm 및 발효기간이 6.60 day일 때였다. 조산발효시 견류알콜의 함량의 변화에 가장 큰 영향을 주는 인자는 발효기간이었으며, 그 다음으로 교반산도 및 초기산도의 순으로 나타났다. 입력도는 초기산도가 1.50%, 교반산도가 150.00 ppm 및 발효기간이 6.00 day일 때 0.37로 가장 높았다. 입력도에 가장 많은 영향을 주는 인자는 초기산도로 나타났으며, 교반산도 및 발효기간은 변할에 있어서 동일하게 거의 영향을 미치지 않는 것으로 나타났다.

이상의 결과로 미나미 본 바 충산도가 높고 견류알콜의 함량이 낮은 최적 조건 발효조건은 초기산도 1.8%, 교반산도 70 ppm 및 발효기간 6 day로 설정한 것이 적당하였다.

즉, 감점법을 이용하여 감식초를 제조하기 위해서 1차 알콜발효조건은 Saccharomyes cerevisi DJ 97을 이용하여 감

검법에 가수량을 12 mL/g, 초기 당량량을 12°Brix 및 발효시간을 48 hr로 할 때 최적의 감 알콜발효를 얻을 수 있는 것으로 나타났으며, 2차 조산발효조건은 1차 알코발효조건

에 의해 제조된 감 알콜발효액에 Acetobacter sp. PA97를 첨

가하여 초기산도 1.8%, 교반산도 70 ppm 및 발효시간 6 day로 설정하여 발효시감 식초 생산성이 가능함을 확인할 수 있었다. 본 실험이로 설정된 발효조건으로 감점법을 이용하

여 다시 감식초를 제조하였으며, 제조한 감식초의 신도 4.3%, 최종당도 5°Brix, 잔류 알코발효량은 1.2%로 나타났다.

요 약

.fp각 발효 발효물인 감점법을 효율적으로 이용하기 위하여 2단계로 알콜 및 조산 발효에 의해 감식초를 제조하였다. 감

점법을 이용한 알콜발효에서 알코발효량은 가수량이 12.43 mL/g 일 때, 초기 당량량 12.41°Brix 및 발효기간이 48.05 hr의 발효조건에서 최대(8.22%)를 나타내었다. 산함량은 가수량

이 12.18 mL/g, 초기 당량량 13.72°Brix 및 발효시간이 46.22 hr의 발효조건에서 최소(0.30%)를 나타내었다. 조산

발효에서 충산의 함량은 초기산도가 2.02%, 교반산도가 67.98 ppm 및 발효기간이 6.94 day일 때 최대(6.40%)를 나

타내었으며, 입력도는 초기산도가 1.50%, 교반산도가 150.00 ppm 및 발효기간이 6.00 day일 때 가장 낮은 함량을 나타내었

다. 감점법을 이용하여 감식초를 제조하기 위해서 1차 알코발효조건은 가수량 12 mL/g, 초기 당량량 12°Brix 및 발효시간

48 hr로 할 때 가장 알코발효를 제조할 수 있으며, 2차 조산발효조건은 초기산도 1.8%, 교반산도 70 ppm 및 발효기간 6 day인 것으로 나타났다.

감사의 글

본 연구는 농림부에서 시행한 1999년도 농림수산 특성연

구사업(관리번호, 1990102)의 지원에 의한 연구 결과의 일부로 이에 감사드립니다.

문헌

(2003년 4월 12일 첨수; 2003년 7월 1일 재제)
