DOI QR코드

DOI QR Code

Interaction of Norfloxacin with Super-Coiled DNA

  • Hwangbo, Hyun-Jung ;
  • Lee, Young-Ae ;
  • Park, Jung-Hag ;
  • Lee, Yong-Rok ;
  • Kim, Jong-Moon ;
  • Yi, Seh-Yoon ;
  • Kim, Seog K.
  • Published : 2003.05.20

Abstract

Norfloxacin, that inhibits the action of topoisomerase Ⅱ, binds to wide variety of DNA. The binding mode of this drug to double- and super-coiled DNA (ds- and scDNA) is compared in this study by various spectroscopic methods, including absorption, fluorescence, and circular dichroism(CD) spectroscopy. Hypochromism in the absorption band, negative and positive induced CD bands (respectively in 240-260 nm and 270-300 nm region) are apparent for the norfloxacin that bound to both the dsDNA and scDNA. A decrease in fluorescence is also noticed in the presence of both DNAs. Since the spectroscopic characteristics are the same for both complexes, it is imperative that the binding mode of the norfloxacin is similar in ds- and scDNA. In the presence of $Mg^{2+}$, which is a cofactor in the topoisomerase Ⅱ action, the fluorescence intensity of the scDNA-norfloxacin complex increased and the resulting fluorescence intensity and shape was identical to that in the absence of scDNA. Therefore, the addition of an excess amount of $Mg^{2+}$ may result in the extrusion of norfloxacin from scDNA.

Keywords

Quinolone;Norfloxacin;DNA;Super-coiled DNA

References

  1. Shen, L. L.; Mitscher, L. A.; Sharma, P. N.; O'Donnekk, T. J.; Chu, D. W. T.; Cooper, C. S. Biochemisty 1989, 28, 3886. https://doi.org/10.1021/bi00435a039
  2. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum Press: New York, U. S. A., 1983; p 257.
  3. Lee, H. M.; Kim, J.-K.; Kim, S. K. J. Biomol. Str. Dyn. 2002, 19, 1083. https://doi.org/10.1080/07391102.2002.10506811
  4. Palù, G.; Valisena, S.; Peracchi, M.; Palumbo, M. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9671. https://doi.org/10.1073/pnas.89.20.9671
  5. Lyng, R.; Rodger, A.; Nordén, B. Biopolymer 1991, 31, 1709. https://doi.org/10.1002/bip.360311405
  6. Lyng, R.; Rodger, A.; Nordén, B. Biopolymer 1992, 32, 1201. https://doi.org/10.1002/bip.360320910
  7. Lee, E.-J.; Yeo, J.-A.; Jung, K.; Hwangbo, H. J.; Lee, G.-J.; Kim, S. K. Arch. Biochem. Biophys. 2001, 395, 21. https://doi.org/10.1006/abbi.2001.2563
  8. Yeo, J.-A.; Cho, T.-S.; Kim, S. K.; Moon, H.-R.; Jhon, G.-J.; Nam, W.-W. Bull. Korean Chem. Soc. 1998, 19, 449.
  9. Wu, S.; Zhang, W.; Chen, X.; Hu, Z.; Hooper, M.; Hooper, B.; Zhao, Z. Spectochimica Acta Part A 2001, 57, 1317. https://doi.org/10.1016/S1386-1425(01)00385-7
  10. Lee, E.-J.; Yeo, J.-A.; Lee, G.-J.; Han, S. W.; Kim, S. K. Eur. J. Biochem. 2000, 267, 6018. https://doi.org/10.1046/j.1432-1327.2000.01677.x
  11. Greenwood, D. In Antimicrobial Chemotherapy; Greenwood, D., Ed.; Oxford University Press: Oxford, U.K., 1989; p 46.
  12. Hooper, D. C.; Wolfson, J. S. Quinolone Antimicrobial Agents, 2nd ed.; American Society of Microbiology: Washington, DC, U.S.A., 1995.
  13. Son, G.-S.; Yeo, J.-A.; Kim J.-M.; Kim, S. K.; Moon, H.-R.; Nam, W.-W. Biophys. Chem. 1998, 74, 225. https://doi.org/10.1016/S0301-4622(98)00178-1
  14. Wang, J. C. Annu. Rev. Biochem. 1985, 54, 665. https://doi.org/10.1146/annurev.bi.54.070185.003313
  15. Son, G.-W.; Yeo, J.-A.; Kim, M.-S.; Kim, S. K.; Holmen, A.; Åkerman, B.; Norden, B. J. Am. Chem. Soc. 1998, 120, 6451. https://doi.org/10.1021/ja9734049
  16. Bailly, C.; Colson, P.; Houssier, C. Biochem. Bioph. Res. Commun. 1998, 243, 844. https://doi.org/10.1006/bbrc.1998.8189
  17. Shen, L. L.; Kohlbrenner, W. E.; Weigl, D.; Baranowski, J. J. Biol. Chem. 1989, 264, 2973.
  18. Sissi, C.; Perdona, E.; Domenici, E.; Feriani, A.; Howells, A. J.; Maxwell, A.; Palumbo, M. J. Mol. Biol. 2001, 311, 195. https://doi.org/10.1006/jmbi.2001.4838
  19. Shen, L. L.; Baranowski, J.; Pernet, A. G. Biochemistry 1989, 28, 3879. https://doi.org/10.1021/bi00435a038
  20. Shen, L. L.; Pernet, A. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 307. https://doi.org/10.1073/pnas.82.2.307

Cited by

  1. Thermodynamic Investigation of the Formation of Complexes between Norfloxacin and Various Mononucleotides vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3233
  2. Spectroscopic studies on the interaction between norfloxacin and FNC, 2′-deoxy-β-fluoro-4′-azidocytidine: analytical application for determination of FNC vol.6, pp.9, 2014, https://doi.org/10.1039/c3ay41499j
  3. Antibacterial activity of polymers with norfloxacin moieties against native and norfloxacin-tolerance-induced bacteria vol.96, pp.3, 2005, https://doi.org/10.1002/app.21543
  4. Absorption Study of Norfloxacin – DNA Interaction vol.265, pp.1, 2008, https://doi.org/10.1002/masy.200850529