DOI QR코드

DOI QR Code

Interplay of the Intramolecular Water Vibrations and Hydrogen Bond in N-Methylacetamide-Water Complexes: Ab Initio Calculation Studies

  • Published : 2003.08.20

Abstract

The correlation between the water and N-methylacetamide (NMA) intramolecular vibrational frequencies and the hydrogen-bond length in a variety of NMA-H₂O and NMA-D₂O complexes was investigated by carrying out ab initio calculations. As the hydrogen-bond length decreases, the frequencies of bending and stretching modes of the hydrogen-bonding water increases and decreases, respectively, and the amide I and II (III) mode frequencies of the NMA decreases and increases, respectively. In this paper, correlation maps among the amide (I, II, and III) modes of NMA and three intramolecular water modes are thus established, which in turn can be used as guidelines for interpreting two-dimensional vibrational spectra of aqueous NMA solutions.

References

  1. Spectroscopic Methods for Determining Protein Structure inSolution; Havel, H. A., Ed.; VCH: New York, U. S. A., 1996.
  2. Arrondo, J. L. R.; Goni, F. M. Progr. Biophys. Mol. Biol. 1999, 72,367. https://doi.org/10.1016/S0079-6107(99)00007-3
  3. Infrared and Raman Spectroscopy of Biological Materials;Gremlich, H.-U.; Yan, B., Eds.; Marcel Dekker: New York, 2000.
  4. Surewicz, W. K.; Mantsch, H. H. Biochim. Biophys. Acta 1988,952, 115. https://doi.org/10.1016/0167-4838(88)90107-0
  5. Torii, H.; Tasumi, M. In Infrared Spectroscopy of Biomolecules;Mantsch, H. H.; Chapman, D., Eds.; Wiley-Liss: New York, U. S.A., 1996; p 1.
  6. Krimm, S.; Bandekar, J. Adv. Protein Chem. 1986, 38, 181. https://doi.org/10.1016/S0065-3233(08)60528-8
  7. Susi, H.; Byler, D. M. Biochem. Biophys. Res. Commun. 1983,115, 391. https://doi.org/10.1016/0006-291X(83)91016-1
  8. Prestrelski, S. J.; Byler, D. M.; Thompson, M. P. Int. J. Pept.Protein Res. 1991, 37, 508.
  9. Torii, H.; Tasumi, M. J. Chem. Phys. 1992, 96, 3379. https://doi.org/10.1063/1.461939
  10. Choi, J.-H.; Ham, S.; Cho, M. J. Chem. Phys. 2002, 117, 6821. https://doi.org/10.1063/1.1504438
  11. Cha, S.; Ham, S.; Cho, M. J. Chem. Phys. 2002, 117, 740. https://doi.org/10.1063/1.1483257
  12. Chen, X. G.; Schweitzer-Stenner, R.; Krimm, S.; Mirkin, N. G.;Asher, S. A. J. Am. Chem. Soc. 1994, 166, 11141.
  13. Chen, X. G.; Asher, S. A.; Schweitzer-Stenner, R.; Mirkin, N. G.;Krimm, S. J. Am. Chem. Soc. 1995, 117, 2884. https://doi.org/10.1021/ja00115a021
  14. Lee, S.-H.; Krimm, S. Chem. Phys. 1998, 230, 277. https://doi.org/10.1016/S0301-0104(97)00349-2
  15. Kubelka, J.; Keiderling, T. A. J. Am. Chem. Soc. 2001, 123,6142. https://doi.org/10.1021/ja010270x
  16. Kubelka, J.; Keiderling, T. A. J. Phys. Chem. A 2001, 105, 10922. https://doi.org/10.1021/jp013203y
  17. Ultrafast Infrared and Raman Spectroscopy; Fayer, M. D., Ed.;Marcel Dekker: New York, U. S. A., 2001.
  18. Chemical Physics, 266, issues 2-3, 2001.
  19. Tanimura, Y.; Mukamel, S. J. Chem. Phys. 1993, 99, 9496. https://doi.org/10.1063/1.465484
  20. Tominaga, K.; Yoshihara, K. Phys. Rev. Lett. 1996, 74, 3061. https://doi.org/10.1103/PhysRevLett.74.3061
  21. Okumura, K.; Tanimura, Y. J. Chem. Phys. 1997, 106, 1687 https://doi.org/10.1063/1.473284
  22. Okumura, K.; Tanimura, Y. J. Chem. Phys. 1997, 107, 2267. https://doi.org/10.1063/1.474604
  23. Cho, M.; Okumura, K.; Tanimura, Y. J. Chem. Phys. 1997, 108,1326.
  24. Tokmakoff, A.; Lang, M. J.; Larsen, D. S.; Fleming, G. R.;Chernyak, V.; Mukamel, S. Phys. Rev. Lett. 1997, 79, 2702. https://doi.org/10.1103/PhysRevLett.79.2702
  25. Zhao, W.; Chernyak, V.; Mukamel, S. J. Chem. Phys. 1998, 110,5011. https://doi.org/10.1063/1.478400
  26. Steffen, T.; Duppen, K. Chem. Phys. Lett. 1997, 273, 47. https://doi.org/10.1016/S0009-2614(97)00583-6
  27. Cho, M. In Advances in Multi-photon Process and Spectroscopy;Lin, S. H.; Villaeys, A. A.; Fujimura, Y., Eds.; World Scientific:Singapore, 1999; Vol. 12, p 229.
  28. Hahn, S.; Park, K.; Cho, M. J. Chem. Phys. 1999, 111, 4121. https://doi.org/10.1063/1.479709
  29. Park, K.; Hahn, S.; Cho, M. J. Chem. Phys. 1999, 111, 4131. https://doi.org/10.1063/1.479710
  30. Cho, M. J. Chem. Phys. 1999, 111, 4140. https://doi.org/10.1063/1.479711
  31. Hahn, S.; Kwak, K.; Cho, M. J. Chem. Phys. 1999, 112, 4553. https://doi.org/10.1063/1.481014
  32. Cho, M. J. Chem. Phys. 2000, 112, 9978. https://doi.org/10.1063/1.481634
  33. Kaufman, L. J.; Heo, J.; Fleming, G. R.; Sung, J.; Cho, M. Chem.Phys. 2001, 266, 251. https://doi.org/10.1016/S0301-0104(01)00251-8
  34. Cho, M. Phys. Rev. A 2000, 61, 23406. https://doi.org/10.1103/PhysRevA.61.023406
  35. Blank, D.; Kaufman, L.; Fleming, G. R. J. Chem. Phys. 2000, 113,771. https://doi.org/10.1063/1.481851
  36. Zhao, W.; Wright, J. C. Phys. Rev. Lett. 1999, 83, 1950. https://doi.org/10.1103/PhysRevLett.83.1950
  37. Bonn, M.; Hess, Ch.; Miners, J. H.; Bakker, H. J.; Heinz, T. F.;Cho, M. Phys. Rev. Lett. 2001, 86, 1566. https://doi.org/10.1103/PhysRevLett.86.1566
  38. Sung, J.; Cho, M. J. Chem. Phys. 2000, 113, 7072. https://doi.org/10.1063/1.1312276
  39. Sung, J.; Silbey, R. J.; Cho, M. J. Chem. Phys. 2001, 115, 1422. https://doi.org/10.1063/1.1379751
  40. Okumura, K.; Jonas, D. M.; Tanimura, Y. Chem. Phys. 2001, 266,237. https://doi.org/10.1016/S0301-0104(01)00252-X
  41. Hamm, P.; Lim, M.; Hochstrasser, R. M. J. Phys. Chem. B 1998,102, 6123. https://doi.org/10.1021/jp9813286
  42. Hamm, P.; Lim, M.; DeGrado, W. F.; Hochstrasser, R. M. J. Phys.Chem. A 1999, 103, 10049. https://doi.org/10.1021/jp9917650
  43. Piryatinski, A.; Chernyak, V.; Mukamel, S. In Ultrafast Infraredand Raman Spectroscopy; Fayer, M. D., Ed.; Marcel Dekker: NewYork, U. S. A., 2001; p 349.
  44. Woutersen, S.; Hamm, P. J. Phys. Chem. B 2000, 104, 11316. https://doi.org/10.1021/jp001546a
  45. Hamm, P.; Lim, M.; DeGrado, W. F.; Hochstrasser, R. M. Proc.Natl. Acad. Sci. 1999, 96, 2036. https://doi.org/10.1073/pnas.96.5.2036
  46. Hamm, P.; Lim, M.; Hochstrasser, R. M. J. Phys. Chem. B 1998,102, 6123. https://doi.org/10.1021/jp9813286
  47. Woutersen, S.; Hamm, P. J. Phys. Chem. B 2000, 104, 11316. https://doi.org/10.1021/jp001546a
  48. Scheurer, C.; Piryatinski, A.; Mukamel, S. J. Am. Chem. Soc.2001, 123, 3114. https://doi.org/10.1021/ja003412g
  49. Cho, M. PhysChemComm. 2002, 5, 40. https://doi.org/10.1039/b110898k
  50. Gale, G. M.; Gallot, G.; Hache, F.; Lascoux, N.; Bratos, S.;Leicknam, J.-Cl. Phys. Rev. Lett. 1999, 82, 1068. https://doi.org/10.1103/PhysRevLett.82.1068
  51. Bratos, S.; Gale, G. M.; Gallot, G.; Hache, F.; Lascoux, N.;Leicknam, J.-Cl. Phys. Rev. E 2000, 61, 5211. https://doi.org/10.1103/PhysRevE.61.5211
  52. Nienhuys, H.-K.; Woutersen, S.; van Santen, R. A.; Bakker, H. J.J. Chem. Phys. 1999, 111, 1494. https://doi.org/10.1063/1.479408
  53. Mikenda, W. J. Mol. Struct. 1986, 147, 1. https://doi.org/10.1016/0022-2860(86)87054-5
  54. Woutersen, S.; Mu, Y.; Stock, G.; Hamm, P. Chem. Phys. 2001,266, 137. https://doi.org/10.1016/S0301-0104(01)00224-5
  55. Guo, H.; Karplus, M. J. Phys. Chem. 1992, 96, 7273. https://doi.org/10.1021/j100197a027
  56. Guo, H.; Karplus, M. J. Phys. Chem. 1994, 98, 7104. https://doi.org/10.1021/j100080a002
  57. Dixon, D. A.; Dobbs, K. D.; Valentini, J. J. J. Phys. Chem. 1994,98, 13435. https://doi.org/10.1021/j100102a001
  58. Han, W.-G.; Suhai, S. J. Phys. Chem. 1996, 100, 3942. https://doi.org/10.1021/jp952250l
  59. Torii, H.; Tatsumi, T.; Tasumi, M. J. Raman Spectrosc. 1998, 29,537. https://doi.org/10.1002/(SICI)1097-4555(199806)29:6<537::AID-JRS272>3.0.CO;2-X
  60. Ham, S.; Kim, J.-H.; Lee, H.; Cho, M. J. Chem. Phys. 2003, 118,3491. https://doi.org/10.1063/1.1536980
  61. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A.; Stratmann, Jr., R. E.; Burant, J. C.; Dapprich, S.; Millam, J.M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.;Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.;Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, RevisionA.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
  62. Cho, M. J. Chem. Phys. 2003, 118, 3480. https://doi.org/10.1063/1.1536979
  63. Park, K.; Cho, M. J. Chem. Phys. 1998, 109, 10559. https://doi.org/10.1063/1.477756

Cited by

  1. -Helical Hydrogen Bond Revealed by Two-Dimensional Infrared Spectroscopy vol.131, pp.6, 2009, https://doi.org/10.1021/ja807572f
  2. Linear and Two-Dimensional Infrared Spectroscopic Study of the Amide I and II Modes in Fully Extended Peptide Chains vol.115, pp.18, 2011, https://doi.org/10.1021/jp105527n
  3. Hydration Effect on Amide I Infrared Bands in Water: An Interpretation Based on an Interaction Energy Decomposition Scheme vol.119, pp.29, 2015, https://doi.org/10.1021/jp508675a
  4. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives vol.36, pp.3, 2017, https://doi.org/10.1080/0144235X.2017.1321856