Development of a Three-Dimensional Wind Field Model using the Principle of Variational Method

변분법 원리를 이용한 3차원 바람장 모델 개발

  • 서경석 (한국원자력연구소 원자력환경연구부) ;
  • 김은한 (한국원자력연구소 원자력환경연구부) ;
  • 황원태 (한국원자력연구소 원자력환경연구부) ;
  • 한문희 (한국원자력연구소 원자력환경연구부)
  • Published : 2003.06.30

Abstract

A three-dimensional wind field model based on the variational technique has been developed for estimating the overall wind patterns over a complex terrain. The three-dimensional elliptic partial differential equations on Cartesian and terrain-following coordinates have been established to obtain the Lagrangian multiplier and the adjusted wind velocity. The simulations were performed to evaluate the variations of the velocity vectors on the hemisphere, half-cylinder, and saddle type obstacles. Also, the wind field model in the terrain-following coordinate has been applied for evaluating the characteristics of wind patterns according to the variations of Gauss precision moduli on the hemispheric topography. The results showed that the horizontal and vertical wind components were strongly governed by the selection of the values of Gauss precision moduli.

References

  1. Sandalls, F. J., Segal, M. G. and Victorova, N., 'Hot particles from Chernobyl: a review,' J. of Environmental Radioactivity, 18, 5-22 (1993) https://doi.org/10.1016/0265-931X(93)90063-D
  2. Dickerson, M. H., and Orphan, R. C. 'Atmospheric release advisory capability,' Nuclear Safety, 17, 281-289(1976)
  3. Chino, M. and Ishikawa, H., 'Experimental verification study for system for prediction of environmental emergency dose information; SPEEDI, (I),' J. of Nuclear Science and Technology, 25(9), 721-730 (1988)
  4. Ehrhardt, J., Sauer, J. Schule, O., Benz, G., Rafat, M. and Richter, J., 'Development of RODOS, a comprehensive decision support system for nuclear emegencies in European overview,' Radiation Protection Dosimetry, 50, 195-203(1993) https://doi.org/10.1093/oxfordjournals.rpd.a082089
  5. Ratto, C. F., Festa, R, Romeo, C., Frumento, O. A., and Galluzzi, M., 'Mass-consistent models for wind fields over complex terrain : the state of the art,' Environmental Software, 9 247-268(1994)
  6. Sasaki, Y., 'Some basic formalisms in numerical variational analysis.' Mon. Wea Rev., 98, 875-883(1970)
  7. Barnard, J. C., Wegley, H. L., and Hiester, T. R., 'Improving the performance of mass consistent numerical models using optimization techniques,' J. Climate Appl. Meteor., 26, 675-686(1987)
  8. Moussiopoulos, M., and Flassak, TH., 'Two vectorized algorithms for the effective calculation of mass-consistent flow fields,' J. Climate Appl. Meteor., 25, 847-857(1985)
  9. Ross, D. G., Smith, I. N., Manins, P. C. and Fox, D. G., 'Diagnostic wind fields modeling for complex terrain : model development and testing,' J. Applied Meteor., 27, 785-796(1988)
  10. Sherman, C. A., 'A mass-consistent model for wind fields over complex terrain,' J. Applied Meteor., 17, 312-319(1977)
  11. Dickerson, M. H., 'MASCON-A mass consistent atmospheric flux model for regions with complex terrain.' J. Applied Meteot., 17, 241-253(1978)
  12. Hoffman, K. A., Computational Fluid Dynamics for Engineers, Engineering Education System, Austin, 1-567(1989)
  13. Ross, D. G., and Fox, D. G., 'Evaluation of an air pollution analysis system for complex terrain,' J. Applied Meteor., 30, 909-923 (1991) https://doi.org/10.1175/1520-0450(1991)030<0909:EOAAPA>2.0.CO;2
  14. 한문희, 이영복, 김은한, 서경석, 황원태, 실시간 방사선 피폭해석 시스템 구성 연구, KAERI/RR-1737/96, 한국원자력연구소 (1997)