Photocatalytic degradation of TCE using solar energy in POFR

플라스틱 광섬유 광촉매 반응기에서 태양에너지를 이용한 TCE의 광촉매 분해

  • Jeong, Hee-Rok (Department of Chemical Engineering, Yonsei University) ;
  • Moon, Il (Department of Chemical Engineering, Yonsei University) ;
  • Joo, Hyun-Ku (Photochemical Materials Research Team Korea Institute of Energy Research) ;
  • Jun, Myung-Seok (Photochemical Materials Research Team Korea Institute of Energy Research)
  • 정희록 (연세대학교 화학공학과) ;
  • 문일 (연세대학교 화학공학과) ;
  • 주현규 (한국에너지기술연구원 광화학소재연구팀) ;
  • 전명석 (한국에너지기술연구원 광화학소재연구팀)
  • Published : 2002.09.30

Abstract

The photocatalytic degradation of TCE using solar energy in POFR was studied. The use of solar energy was investigated in plastic optica fiber photocatalytic reactor (POFR). In POFR, the main parameters of photocatalytic degradation of TCE were lihgt intensity, thickness of $TiO_2$-coated film on plastic fiber core, the same of total $TiO_2$-coated surface area with changed length. We studied the apparent photonic efficiency and photocatalytic degradation rate of TCE in POFR. The apparent photonic efficiency of various light intensities was decreased by an incresed intensities. The photocatalytic activities of $TiO_2$-coated optical fiber reactor system depended on the coating thickness, and total clad-stripped surface area of POF. Photocatalytic degradation of trichloroethylene ($C_2HCl_3$, TCE) in the gas-phase was elucidated by using $TiO_2$-coated plastic optical fiber reactor. In TCE degradation, in-situ FTIR measurement resulted in mineralization into $CO_2$.

References

  1. Ollis, D. F. and Al-Ekabi, H. (1993), 'Photocatalytic Purification and Treatment of Water and Air', Elsevier
  2. Kim, J.S., Itoh, K. and Murabayashi, M. (1998), Chemosphere, 36, 483 https://doi.org/10.1016/S0045-6535(97)00370-6
  3. Anpo, M., Shima, T., and Kubokawa Y. (1985), Chem. Lett., 1799
  4. Huybrechts, G. and Meyers, L. (1966) Trans. Faraday Soc., 62 2191 https://doi.org/10.1039/tf9666202191
  5. Kleindienst, T. E., Shepson, P, B.,Nero, C. M., and Bufalini, J. J. (1989) Inter. J. Chem. Kinet., 21, 863 https://doi.org/10.1002/kin.550211002
  6. Sanhueza, E., Hisatsune, I. C., and Heicklen, J. (1966), Chem. Rev., 76,801 https://doi.org/10.1021/cr60304a006
  7. Marinangeli, R. E., Ollice, D. F.(1980), AIChE J. 26, 1000 https://doi.org/10.1002/aic.690260615
  8. Nimlos, M. R., Jacoby, W.A., Blake, D. M. and Milne, T. A. (1993). Environ. Sci. Technol, 27, 732 https://doi.org/10.1021/es00041a018
  9. Jacoby, W. A. Ph. D. Thesis (1993), University of Colorado
  10. Marinangeli, R. E., Ollice, D. F.(1977), AIChE J. 23, 415 https://doi.org/10.1002/aic.690230403
  11. Marinangeli, R. E., Ollice, D. F.(1982) AIChE J. 28, 945 https://doi.org/10.1002/aic.690280609
  12. 정희록, 주현규, 박상은, 전명석, 문 일(2001), 화학공학, 39, 352
  13. Hoffmann, M. R. and Peill, N. J.(1996), Environ. Sci. TechnoL, 30. 2806 https://doi.org/10.1021/es960047d
  14. Hoffmann, M. R., Martin, S. T., Choi W. Y., and Bahnemann, D. W. (1995) Chem. Rev. 95, 69 https://doi.org/10.1021/cr00033a004
  15. Hoffmann, M. R. and Peill, N. J.(1997) Journal of Solar Energy Engineering, 119, 229 https://doi.org/10.1115/1.2888024
  16. 정희록, 주현규, 박상은, 전명석, 문 일(2001), 한국태양에너지학회, 21(2), 45
  17. Pellizzetti, E. and Serpone, N.(1986), 'Homogeneous and Heterogeneous Photocatalysis'. NATO ASI Series 174, Plenum, New York