DOI QR코드

DOI QR Code

Estimation of Genetic Parameters for Economic Traits in Yorkshire

요크셔종에 대한 경제형질의 유전모수 추정

  • Song, K.L. (Division of Applied Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Kim, B.W. (Division of Applied Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Kim, S.D. (Depaartment of Livestock Improvement, National Livestock Research Institute, R.D.A.) ;
  • Choi, C.S. (Depaartment of Livestock Improvement, National Livestock Research Institute, R.D.A.) ;
  • Kim, M.J. (Depaartment of Livestock Improvement, National Livestock Research Institute, R.D.A.) ;
  • Lee, J.G. (Division of Applied Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University)
  • 송광림 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 김병우 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 김시동 (축산기술연구소 종축개량부) ;
  • 최진성 (축산기술연구소 종축개량부) ;
  • 김명직 (축산기술연구소 종축개량부) ;
  • 이정규 (경상대학교 응용생명과학부, 농업생명과학연구원)
  • Published : 2002.10.31

Abstract

This study was conducted to estimate the heritabilities and genetic and phenotypic correlations among average daily gain, age at 90kg and backfat thickness in Yorkshire pigs. The data were obtained from 2,111 heads of Yorkshire tested at National Livestock Research Institute from May, 1994 to April, 2000. Genetic parameters were estimated with a multiple trait animal model by using DF-REML (Deri- vative-Free REstricted Maximum Likelihood). The results obtained are summarized as follows ; The means of traits studied were 0.871${\pm}$0.124 kg for average daily gain, 145.397${\pm}$11.718 days for age at 90kg and 1.476${\pm}$0.241 cm for backfat thickness. The estimated heritabilities were 0.55 for average daily gain, 0.56 for age at 90kg and 0.55 for backfat thickness. The genetic correlation of average daily gain with age at 90kg and backfat thickness were -0.82, 0.10, respectively. The genetic correlation of age at 90kg with backfat thickness was -0.25. The phenotypic correlations of average daily gain(ADG) with age at 90kg and backfat thickness and age at 90kg with backfat thickness were -0.77, 0.02 and -0.05 respectively. Though phenotypic correlation of ADG and age at 90kg was low, breeding project should be carefully considered by high genetic correlation. High heritabilities on all economic traits were obtained. Therefore, it is considered that suitable selection and management is needed successful improvement.

Keywords

Yorkshire;Genetic parameter;Heritability;Genetic correlation;Swine

References

  1. Bichard, M., David, P. J. and Bovey, M. 1986. Selection between and within lines and cross breeding strategies for world wide production of hybrids. Proceeding of the 3rd World Congress Genetics Applied to Livestock Production. Lincoln. X:130.
  2. Boldman, K., Kriese, L. A., Van Vleck, L. D., Van Tassell, C. P. and Kachman, S. D. 1995. A manual for use of MTDFREML. A set of programs to obtain estimates of variances and covariances (Draft). U. S. Dept. of Agriculture, Agricultural Research Service.
  3. Bryner, S. M., Mabry, J. W., Bertrand, J. K., Benyshek, L. L. and Kriese. L. A. 1992. Estimation of direct and maternal heritability and genetic correlation for backfat and growth rate in swine using data from centrally tested Yorkshire boars. J. Anim. Sci. 70:1755. https://doi.org/10.2527/1992.7061755x
  4. Culbertson, M. S. and Mabry, J. W., Misztal, I., Genger, N., Bertrand, J. K. and Varona, L. 1998. Estimation of dominance variance in purebred Yorkshire Swine. J. Anim. Sci. 1998. 76:448.
  5. Ferraz, J. B. S. and Johnson, R K. 1993. Animal model estimation of genetic parameters and response to selection for litter size and weight, growth, and backfat in closed seedstock popula- tions of Large White and Landrace swine. J. Anim. Sci. 71:850.
  6. Henderson, C. R. 1976. Multiple trait sire evaluation using the relationship matrix. J. Dairy. Sci. 59:769.
  7. Johnson, Z. B., Chewning, J. J. and Nugent, R. A. III. 1999. Genetic parameters for production traits and measures off residual feed intake in Large White swine. J. Anim. Sci. 77:1679.
  8. 나종삼, 김종승, 백동훈, 최호성, 송주엽, 오하식. 1998. 검정돈의 생산형질 및 선발지수에 미치는 제요인의 효과. 한국축산학회. 40(4):345.
  9. Li, X. and Kennedy, B. W. 1994. Genetic parameters for growth rate and backfat in Canadian Yorkshire, Landrace, Duroc, and Hampshire pigs. J. Anim. Sci. 72:1450.
  10. Mrode, R. A. 1996. Linear Models for the Prediction of Animal Breeding Values. Cab International, UK.
  11. Nelder, J. A. and Mead, R. 1965. A simplex method for function minimization. Computer J. 7: 308.
  12. Patterson, H. D. and Thompson, R. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika. 58:545.
  13. SAS. 1996. SAS/STAT guide for personal computers @6.12. SAS institude Inc., Cary, NC., USA.
  14. Searle, S. R. 1982. Matrix algebra useful for statistics. John Wiley and Sons, New York, NY.
  15. Smith, S. P. and Graser, H. U. 1986. Genetic and environmental trends for litter size in swine. J. Anim. Sci. 69:3177.
  16. Van Alst, G. and Robison, O. W. 1992. Prediction of performance of progeny from test station boars. J. Anim. Sci. 70:2078.
  17. 박병호. 1995. 랜드레이스종 돼지의 경제형질에 대한 유전모수와 성의 효과 추정에 관한 연구. 서울대학교 석사학위논문.
  18. 백동훈, 최호성, 송주엽, 손삼규, 오하식. 1995. 돼지의 주요 경제형질에 대한 환경요인의 영향. 한국축산학회. 37(6):589.
  19. 서강석, 1996. 다형질 애니멀 모델에 의한 돼지의 경제형질의 유전모수, 육종가 및 유전적 변화추세의 추정에 관한 연구. 서울대학교 박사학위 논문.
  20. 송주엽, 최호성, 백동훈, 박화춘. 1999. 돼지의 경제형질에 대한 직접 및 모계유전 효과의 비교. 한국축산학회. 41(6):605-612.
  21. 이수찬. 1994. 돼지의 경제능력에 대한 조합능력의 추정. 서울대학교 석사학위 논문.
  22. 조영춘, 김계웅, 박홍양. 돼지의 주요 경제형질에 대한 유전모수 추정에 관한 연구. 한국축산학회. 40(5):447-454.
  23. 최성의. 1995. 돼지의 경제형질에 대한 유전 분산과 유전력의 추정에 관한 연구. 서울대학교 석사학위논문.
  24. 최진성, 이정규. 2001. 농장 검정돼지의 품종, 성 및 환경 요인이 경제형질에 미치는 효과. 한국축산학회. 43(4):431-444.
  25. 최진성. 2001. 농장 검정돼지 경제형질의 유전모수, 육종가 및 유전적 변화 추세의 추정에 관한 연구. 경상대학교 박사학위논문.