In Vitro Bioassay for Transforming Growth Factor-$\beta$ Using XTT Method

  • Kim, Mi-Sung (College of Pharmacy, Duksung Womens University) ;
  • Ahn, Seong-Min (College of Pharmacy, Duksung Womens University) ;
  • Moon, Aree (College of Pharmacy, Duksung Womens University)
  • Published : 2002.12.01

Abstract

Research in the cytokine field has grown exponentially in recent years, and the validity of such studies relies heavily on the appropriate measurement of levels of cytokines in various biological samples. Transforming growth factor (TGF)-$\beta$, a hormonally active polypeptide found in normal and transformed tissue, is a potent regulator of cell growth and differentiation. The most widely used bioassay for TGF-$\beta$ is the inhibition of the proliferation of mink lung epithelial cells. Though detection of [$^3$H]thymidine incorporation is more sensitive than the MTT assay, it presents some disadvantages due to the safety and disposal problems associated with radioisotopes. In this study, we attempted to ascertain the experimental conditions which could be used for measuring the in vitro biological activity of TGF-$\beta$ in a safer and more sensitive way compared with the currently available methods. We compared the commonly used method, the MTT assay, to the XTT assay using different parameters including cell number, incubation time and the wave length used for detecting the product. We examined the anti-proliferative activities of TGF-$\beta$ in three different cell lines: Mv-1-Lu mink lung epithelial cells, MCF10A human breast epithelial cells and H-ras-transformed MCF10A cells. Herein, we present an experimental protocol which provides the most sensitive method of quantifying the biological activity of TGF-$\beta$, with a detection limit of as low as 10 pg/ml: Mv-1-Lu or H-ras MCF10A cells ($1{\times}10^5/well$) were incubated with TGF-$\beta$ at $37^{\circ}C$ in a humidified $CO_2$ incubator for 24 hr followed by XTT treatment and determination of absorbance at 450 or 490 nm. Our results may contribute to the establishment of an in vitro bioassay system, which could be used for the satisfactory quantitation of TGF-$\beta$.

References

  1. Amatayakul-Chantler, S., Qian, S.W., Gakenheimer, K., Bottinger, E.P., Roberts, A.B., Sporn, M.B. [Ser77]transforming growth factor-beta 1. Selective biological activity and receptor binding in mink lung epithelial cells. J. Biol. Chem., 269, 27687-91 (1994)
  2. Barnard, J. A., Lyons, R. M. and Moses, H. L. The cell biology of transforming growth factor. Biochim. Biopsys. Acta, 1032, 79-87 (1990)
  3. Border, W. A., Okuda, S., Languino, L. R., Sporn, M. B. and Ruoslahti, E. Supression of experimental glomerulonephrins by antiserum against transforming growth factor-$\beta$1. Nature, 356, 371-4 (1990) https://doi.org/10.1038/356371a0
  4. Chang, Y. C., Yang, S. F., Hsieh, Y. S. Regulation of matrix metalloproteinase-2 production by cytokines and pharmacological agents in human pulp cell cultures. J. Endod., 27, 679-82 (2001) https://doi.org/10.1097/00004770-200111000-00007
  5. Cuthbert, M. F. and Griffiths, E. Medicines from new biotechnologies. J. Royal. Soc. Med., 81, 126-8 (1988) https://doi.org/10.1177/014107688808100302
  6. Eichler, W., Friedrichs, U., Thies, A., Tratz, C., Wiedemann, P. Modulation of matrix metalloproteinase and TIMP-1 expression by cytokines in human RPE cells. Invest. Ophthalmol. Vis. Sci., 43, 2767-73 (2002)
  7. Fava, R., Olsen, N., Keski-Oja, J., Moses, H. and Pincus, T Active and latent forms of transforming growth tactor-$\beta$ activity in synovial effusions. J., Exp. Med., 169, 291-6 (1989) https://doi.org/10.1084/jem.169.1.291
  8. Fujimoto, K., Sheng, H., Shao, J., Beauchamp, R.D. Transforming growth factor-beta1 promotes invasiveness after cellular transformation with activated Ras in intestinal epithelial cells. Exp. Cell Res., 266, 239-49 (2001) https://doi.org/10.1006/excr.2000.5229
  9. Gillio, A. P. and Gabrilove, J. L. Cytokine treatment of inherited bone marrow failure syndromes. Blood, 81, 1669-74 (1993)
  10. Graycar, J. L., Millar, D. A., Arrick, B. A., Lyons, R. M., Moses, H. L. and Derynck, R. Human transforming growth tactor-$\beta$3: recombinant expression, purification and biological activities in comparison with transforming growth factors-$\beta$1 and -$\beta$2. Mol. Endocrinol., 3, 1977 (1989) https://doi.org/10.1210/mend-3-12-1977
  11. Hawser, S. P., Norris, H., Jessup, C. J. and Ghannoum, M. A. Comparison of a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) colorimetric method with the standardized National Committee for Clinical Laboratory Standards method of testing clinical yeast isolates for susceptibility to antifungal agents. J. Clinical Microbiol., 36, 1450-2 (1998)
  12. Julien, P, Berg, T. M. and Lawrence, D. A. Acidic cellular environments: activation of latent TGF and sensitization of cellular responses to TGF and EGF. Int. J. Cancer, 43, 886-91 (1989) https://doi.org/10.1002/ijc.2910430525
  13. Kothapalli, D., Frazier, K. S., Welply, A., Segarini, P. R. and Grotendorst, G. R Transforming growth factor induces anchorage-independent growth of NRK fibroblasts via a connective tissue growth factor-dependent signaling pathway. Cell Growth Differ., 8, 61-8 (1997)
  14. Logu, A. D., Uda, P., Pellerano, M. L., Pusceddu, M. C., Saddi, B. and Schivo, M. L. Comparison of two rapid colorimetric methods for determining resistance of Mycobacterium tuberculosis to Rifampin, Isoniazid, and Streptomycin in liquid medium. Eur. J. Clin. Microbiol. Infect Dis., 20, 33-9 (2001) https://doi.org/10.1007/s100960000403
  15. Meager, A Assays for transforming growth factor. J. Immunol. Methods, 141, 1-14 (1991) https://doi.org/10.1016/0022-1759(91)90204-S
  16. Meshulam, T., Levitz, S.M., Christin, L. and Diamond R. D. A simplifieds new assay for assesment of fungal cell damage with the tetrazolium dye, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-5-carboxanilide (XTT). J. lnfec. Diseases, 192, 1153-6 (1995)
  17. Mire-Sluis, A. R., Page, L. and Thorpe, R. Quantitative cell line based bioassays for human cytokines. J. Immunol. Methods, 187, 191-9 (1995) https://doi.org/10.1016/0022-1759(95)00220-1
  18. Moon, A., Kim, M.-S., Kim, T. G., Kim, S. H., Kim, H. E., Chen, Y. Q. and Kim, H.-R. C. H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial Cells: A role for MMP-2 in the H-ras induced invasive phenotype. Int. J. Cancer, 85, 176-81 (2000) https://doi.org/10.1002/(SICI)1097-0215(20000115)85:2%3C176::AID-IJC5%3E3.0.CO;2-E
  19. Moses, H. L., Branum, E. L., Proper, J. A. and Robinson, R. A. Trar sforminq growth factor production by chemically transformed cells. Cancer Res., 41, 2842-8 (1981)
  20. Oft, M , Heider, K. H., Beug, H. TGF beta signaling is necessary for I carcinoma cell invasiveness and metastasis. Curr. Biol., 8, 1243-52 (1998) https://doi.org/10.1016/S0960-9822(07)00533-7
  21. Randa I, L.. A., Wadhwa, M., Thorpe, R. and Mire-Sluis, A. R. A Novel, sensitive bioassay for transforming growth factor. J. Immunol. Methods, 164, 61-7 (1993) https://doi.org/10.1016/0022-1759(93)90276-D
  22. Rizzino, A.. Soft agar assays for transforming growth factors and mitegenic peptides. In: D. Barnes and D.A. Sirbasku (Eds.), Methoos in Enzymology, Vol. 146, Academic Press, Orlando, FL. p341 (1987)
  23. Robers, A. B., Anzano, M. A., Lamb, L. C., Smith, J. M., Frolik, C. A., Marquardt, H., Todaro, G. J. and Sporn, M. B. Isolation from murine sarcoma cells of novel transforming growth factors potentiated by EGF. Nature, 295, 417-9 (1982) https://doi.org/10.1038/295417a0
  24. Roberts, A. B. and Sporn, M. B. Transforming growth factors. In:M. B. Sporn and A. B. Rolerts(Eds), Peptide growth factors and theis receptors, Vol. 95, Habdbook of Experimental Pharmacology. Springer-Verlag, New York, p. 419 (1990)
  25. Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. and Boyd, M. R Evaluation of soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture usinq human and other tumor cell lines. Cancer Res., 48, 4827-33 (1988)
  26. Soule, H., Maloney, T. M., Wolman, S. R., Peterspm, W. D., Brenz, R., Mcgrath, C. M., Russo, J., Pauley, R J., Jones, R. F. and Brooks, S. C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res., 50, 6075-86 (1990)
  27. Wahl, S. M. Transforming growth factor (TGF-$\beta$) in inflammation: a cause and a cure. J. Clin. lmmunol., 12. 61-74 (1992)
  28. Wick, W., Platten, M., Weller, M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J. Neurooncol., 53, 177-85 (2001) https://doi.org/10.1023/A:1012209518843