DOI QR코드

DOI QR Code

A FREE ℤp-ACTION AND THE SEIBERG-WITTEN INVARIANTS

  • Nakamura, Nobuhiro
  • Published : 2002.01.01

Abstract

We consider the situation that ${\mathbb{Z}_p}\;=\;{\mathbb{Z}/p\mathbb{Z}}$ acts freely on a closed oriented 4-manifold X with ${b_2}^{+}\;{\geq}\;2$. In this situation, we study the relation between the Seiberg-Witten invariants of X and those of the quotient manifold $X/{\mathbb{Z}}_p$. We prove that the invariants of X are equal to those of $X/{\mathbb{Z}}_p$ modulo p.

Keywords

4-manifold;Seiberg-Witten invariants;group action

References

  1. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: I, Ann. of Math. 86, 374-407. https://doi.org/10.2307/1970694
  2. S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifold, Oxford, 1990
  3. M. Furuta, A remark on a fixed point of finite group action on $S^4$, Topology 28 (1989), 35-38 https://doi.org/10.1016/0040-9383(89)90030-X
  4. D. Kotschick, J. W. Morgan, and C. H. Taubes, Four-manifold without symplectic structures but with nontrivial Seiberg- Witt invariants, Math. Res. Lett. 2 (1995), 119-124. https://doi.org/10.4310/MRL.1995.v2.n2.a1
  5. J. W. Morgan, The Seiberg- Witten equations and application to the topology of smooth four-manifolds, Mathematical Notes, Princeton Univ, Press, 1996
  6. M. Ue, A note on Donaldson and Seiberg- Witten invariants for some reducible 4-manifolds (preprint)
  7. M. Ue, Exotic group actions in dimension four and Seiberg- Witten Theory (preprint) https://doi.org/10.3792/pjaa.74.68
  8. E. Witten, Monopoles and 4-manifolds, Math. Res. Lett. 1 (1994), 769-796 https://doi.org/10.4310/MRL.1994.v1.n6.a13

Cited by

  1. $$G$$ G -monopole invariants on some connected sums of 4-manifolds vol.178, pp.1, 2015, https://doi.org/10.1007/s10711-015-0044-1