Analysis of a Putative DNA Polymerase I gene in Brevibacterium ammoniagenes.

Brevibacterium ammoniagenes의 DNA Polymerase I 유사 유전자의 분석

  • 오영필 (우송대학교 식품생명과학부) ;
  • 윤기홍 (우송대학교 식품생명과학부)
  • Published : 2002.06.01

Abstract

The sequence of 3,221 nucleotides immediately adjacent to rpsA gene encoding 30S ribosomal protein S1 of Brevibacterium ammoniagenes was determined. A putative open reading frame (ORF) of 2,670 nucleotides for a polypeptide of 889 amino acid residues and a TAG stop codon was found, which is located at a distance of 723 nucleotides upstream from rpsA gene with same translational direction. The deduced amino acid sequence of the ORF was found to be highly homologous to the DNA polymerase I of Streptomyces griseus (75.48%), Rhodococcus sp. ATCC 15963 (56.69%), Mycobacterium tuberculosis (55.46%) and Mycobacterium leprae (53.99%). It was suggested that the predicted product of the ORF is a DNA polymerase I with three functional domains. Two domains of 5 → 3 exonuclease and DNA polymerase are highly conserved with other DNA polymerase I, but 3 → 5 exonuclease domain is less conserved.

Keywords

Brevibacterium ammoniagenes;DNA polymerase I;gene;nucleotide sequence

References

  1. Curr. Microbiol. v.38 Primary structure of the DNA polymerase I gene of an alpha-Proteobacterium, Rhizobium leguminosarum, and comparison with other family a DNA polymerases Huang, Y.-P.;J. A. Downie;J. Ito. https://doi.org/10.1007/PL00006816
  2. Mol. Microbiol. v.21 A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome Redenbach, M.;H. M. Kieser;D. Denapaite;A. Eichner;J. Cullum;H. Kinashi;D. A. Hopwood https://doi.org/10.1046/j.1365-2958.1996.6191336.x
  3. Kor. J. Appl. Microbiol. Biotechnol. v.28 Nucleotide sequence of the putative gene encoding 30S ribosomal protein S1 from Brevibacterium ammoniagenes Yoon, K. -H.;M. -S. Lee;Y. P. Oh;J. H. Choi
  4. J. Microbiol. Biotechnol. v.9 Cloning, Nucleotide Sequencing, and Characterization of ptsG Gene Encoding Glucose-specific Enzyme II of Phosphotransferase system from Brevibacterium lactofermentum Yoon, K. -H.;K. -N. Lee;J. -K. Lee;S. C. Park
  5. Nucleic Acids Res. v.7 A rapid alkaline extraction procedure for screening recombinant plasmid DNA Birnboim, H. C.;J. Doly
  6. J. Mol. Biol. v.166 Studies on transformation of Escherichia coli with plasmids Hanahan, D. https://doi.org/10.1016/S0022-2836(83)80284-8
  7. J. Bacteriol. v.179 Gene duplications in evolution of archaeal family B DNA polymerases David, R. E.;H. -P. Klenk;W. F. Doolittle https://doi.org/10.1128/jb.179.8.2632-2640.1997
  8. DNA replication, 2ng ed. Kornberg, A.;T. A. Baker
  9. Int. J. Syst. Bacteriol v.41 Transfer of Brevibacterium divaricatum DSM 20297T, "Brevibacterium flavum" DSM 20411, "Brevibacterium lactofermentum" DSM 20412 and DSM 1412, and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns Liebl, W.;M. Ehrmann;W. Ludwig;K. H. Schleifer https://doi.org/10.1099/00207713-41-2-255
  10. J. Bacteriol v.180 A novel DNA polymerase family found in Archaea Yoshizumi, I.;K. Komori;I. K. O. Cann;Y. Koga
  11. J. Microbiol. Biotechnol v.3 Cloning and expression of the gene encoding mannose enzyme II of the Corynebacterium glutamicum phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli Lee, J. -.;M. -H. Sung;K. -H. Yoon;J. -G. Pan;J. -H. Yu;T. -K. Oh
  12. Proc. Natl. Acad. Sci. USA v.97 DNA polymerase active site is highly mutable: Evolutionary consequences Patel, P. H.;L. A. Loeb https://doi.org/10.1073/pnas.97.10.5095
  13. Proc. Natl. Acad. Sci. USA v.74 DNA sequencing with chain terminating inhibitors Sanger, F.;S. Nicklen;A. R. Coulson https://doi.org/10.1073/pnas.74.12.5463
  14. J. Biol. Chem. v.264 Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus Lawyer, F. C.;S. Stoffel;R. K. Saiki;K. Myambo;R. Drummond;D. H. Gelfand
  15. Mol. Microbiol. v.16 The Mycobacterium leprae genome: systematic sequence analysis identifies key catabolic enzymes, ATP-dependent transport systems and a novel polA locus associated with genomic variability Fsihi, H.;S. T. Cole https://doi.org/10.1111/j.1365-2958.1995.tb02317.x
  16. Molecular cloning, A laboratory mannual, 2nd ed. Sambrook, J.;E. F. Fritsch;T. Maniatis
  17. J. Microbiol. Biotechnol. v.8 Cloning, expression, and nucleotide sequencing of the gene encoding glucose permease of phosphotransferase system from Brevibacterium ammoniagenes Yoon, K. -H.;H. Yim;K. H. Jung
  18. FEMS Microbiol. Lett. v.119 Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence Lee, J. -K.;M. -H. Sung;K. -H. Yoon;J. -H. Yu;T. -K. Oh https://doi.org/10.1111/j.1574-6968.1994.tb06880.x
  19. Nature v.393 Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence Cole, S. T. https://doi.org/10.1038/31159
  20. J. Mol. Biol. v.215 Basic local alignment search tool Altschul, S. F.;W. Gish;W. Miller;E. W. Myers;D. J. Lipman