DOI QR코드

DOI QR Code

A Study on Seismic Behavior of Space Frame Bridge Using Three-Dimensional Nonlinear Dynamic Analysis

3차원 비선형 동적해석을 이용한 입체라멘교의 지진거동특성에 관한 연구

  • 김익현 (울산대학교 지구환경시스템공학부)
  • Published : 2002.10.01

Abstract

The characteristics of nonlinear seismic behavior and failure mechanism of RC space frame in railroad viaducts have been studied by the numerical analysis in time domain. The structure concerned is modeled in 3 dimensional extent and the RC frame elements consisting of fibers are employed for the columns. The fibers are characterized as RC zone and PC one to distinguish the different energy release after cracking resulted from the bond characteristic between concrete and re-bar. Due to the deviation of the mass center and the stiffness center of the entire structure the complex behavior is shown under seismic actions. The excessive shear force is concentrated on the column beside flexible one relatively, which leads to the failure of bridge concerned.

비선형동적해석을 통하여 RC 입체라멘교에 대한 지진거동특성 및 파괴메카니즘에 관한 연구를 수행하였다. 파이버모델에 기초한 RC 프레임요소를 교각에 도입하여 3차원영역에서 모델링하여 비선형동적해석을 수행하였다. 해석의 정확성을 향상시키기 위하여 균열 진전후 콘크리트와 철근의 부작특성에 의한 재료역학적 특성차이를 고려하기 위하여 파이버는 철근영역(RC zone)과 무근영역(PC zone)으로 영역화하였다. 대상교량은 관성력 중심위치와 교량의 강성중심 위치가 일치하지 않아 비틀림을 동반한 복잡한 지진거동특성을 나타내었다. 이러한 거동특성에 의하여 유연한 교각 옆에 위치하는 상대적 강성이 큰 교각에 과다한 지진하중이 집중되어 파괴에 이르는 것으로 나타났다.

References

  1. 건설교통부, 내진설계기준연구(II) : 내진설계성능기준과 경제성평가, 1997.
  2. Tsuchiya et al., “Multi directional flexural behavior and nonlinear analysis of RC columns subjected to eccentric axial forces,” Concrete Library of JSCE, No. 37, 2001. 6, pp. 1-15.
  3. Okamura, H. and Maekawa, K., Nonlinear Analysis and Costitutiva Models of Reinforced Concrete, Gihodo-Shuppan.
  4. Maekawa, K. and Okamura, H., “The deformational behavior and constitutive equation of concrete using elasto-plastic and fracture model,” Journal of Faculty of Engineering, University of Tokyo(B), Vol. 37, No. 2, 1983, pp. 253-328.
  5. Shima, H., Chou, L., and Okamura, H., “Micro and macro models for bond behavior in reinforced concrete,” Journal of the Faculty of Engineering, University of Tokyo (B), Vol. 39, No. 2, 1987, pp. 134-194.
  6. Bazant, Z. P. and Oh, B. H., “Crack band theory for fracture of concrete,” Material and Structures, Vol. 16, 1983, pp. 157-177.
  7. Comite Euro-International du Beton, CER-FIP Model Code 1990-Final Draft, Chapter 1-3, Bulletin d'Information, No. 223, 1991
  8. Kato, B., “Mechanical properties of steel under load cycles idealizing seismic actions,” CEB Bulletin D'nformation, 131, 1979, pp. 7-27.
  9. The Metropolitan Expressway Public Corporation, Incorporated Foundation of the Metropolitan Expressway Technical Center, “Investigation on Bridge Highways of the Metropolitan Expressway(1995),” Report of Concrete Piers Subcommittee, Japan, 1996. 2.
  10. Sato, Y. M. and Tsumura, K., “Deformation charateristic of RC column subjected to bilateral loading,” Proc. of JCI, Vol. 16, No. 2, 1994.
  11. Okamura, H. and Higai, T., “Proposed design equation for shear strength of reinforced concrete beams without web reinforcement,” Proc. of JSCE, No. 300, 1980. 8, pp. 131-141.
  12. Niwa, J., Yamada, K., and Okamura, H., “Reevaluation of the equation for shear strength of RC beams without web reinforcement,” Concrete Library of JSCE, No. 9, 1987, pp. 65-84.