DOI QR코드

DOI QR Code

다경간 단순형 교량구조물의 지진거동에 미치는 받침손상의 영향

Effects of Bearing Damage upon Seismic Behaviors of Multi-Span Simply Supported Bridges

  • 김상효 (연세대학교 사회환경시스템공학부) ;
  • 마호성 (호서대학교 토목공학과) ;
  • 조병철 (서영기술단)
  • 발행 : 2002.10.01

초록

본 연구에서는 지진하중을 받는 교량구조물의 동적거동을 보다 실제적으로 예측하기 위하여 받침의 손상여부는 물론 다양한 영향요소를 고려할 수 있는 이상화된 다자유도 교량해석모형을 개발하였으며, 이를 바탕으로 받침의 손상이 교량구조물의 지진응답에 미치는 영향을 분석하였다. 받침의 손상은 마찰요소를 이용한 단순화된 모형으로 고려하였으며, 발생가능한 받침의 손상조건에 따른 영향을 분석하기 위하여 다양한 마찰계수의 적용에 따른 교량구조물의 응답분포특성을 구하였다. 모의분석 결과로부터 받침손상의 고려여부 및 적용된 마찰계수에 따라 최대응답의 크기 및 발생위치가 서로 다르게 평가되었으며, 특히 교량구조물에서 낙교의 발생가능성이 큰 위치에서의 최대상대거리는 받침의 손상여부에 따라 상당한 영을 받는 것으로 나타났다. 그러나 최대응답의 증가량은 크지 않은 것으로 분석되었다. 그러므로 다경간 단순형 교량구조물에 있어서 받침의 손상에 따른 낙교의 발생가능성을 감소시키기 위한 부가적인 받침보강은 필요시 선택적으로 적용될 수 있을 것으로 판단된다.

키워드

지진하중;교량구조물;받침의 손상;마찰요소;낙교

참고문헌

  1. Dicleli, M. and Bruneau, M., “An energy approach to sliding of single-span simply supported slab-on-girder steel highway bridges with damaged bearings,” Earthquake Engineering and Structural Dynamics, Vol. 24, 1995, pp. 395-409. https://doi.org/10.1002/eqe.4290240307
  2. Siddharthan, R. V., El-Gamal, M., and Maragakis, E. A., “Stiffness of abutments on spread footings with cohesionless backfill,” Canadian Geotechnical Journal, Vol. 34, 1997, pp. 686-697. https://doi.org/10.1139/cgj-34-5-686
  3. Anagnopoulos, S. A., “Pounding of buildings in series during earthquakes,” Earthquake Engineering and Structural Dynamics, Vol. 16, 1988, pp. 443-456. https://doi.org/10.1002/eqe.4290160311
  4. Rabbat, B. G. and Russell, H. G., “Friction coefficient of steel on concrete or grout,” Journal of Structural Engineering, Vol. 111, No. 3, 1985, pp. 505-515. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:3(505)
  5. Horyna, T., Ventura, C. E., Foschi, R. O., and Fan, B. H., “Shake table studies of sliding of a concrete gravity dam model,” 11th European Conference on Earthquake Engineering, 1998.
  6. Gasparini, D. A. and Vanmarcke, E. H., “Evaluation of seismic safety of buildings simulated earthquake motions compatible with prescribed response spectra,” Massachusetts Ins. of Technology, Report 2, 1976.
  7. 한국도로교통협회, 도로교설계기준, 2000.
  8. Kim, S. H., Lee, S. W., and Mha, H. S., “Dynamic behaviors of bridges considering pounding and friction effects under seismic excitations,” Structural Engineering and Mechanics, Vol. 10, No. 6, 2000, pp. 621-633. https://doi.org/10.12989/sem.2000.10.6.621
  9. Mayes, R. L., Buckle, I. G., Kelly, T. E., and Jones, L. R., “AASHTO seismic isolation design requirements for highway bridges,” Journal of Structural Engineering, Vol. 118, No. 1, 1992, pp. 284-333. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:1(284)
  10. Watanabe, E., Sugiura, K., Nagata, K., and Kitane, Y., “Performances and damages to steel structures during the 1995 Hyogoken-Nanbu earthquake,” Engineering Structures, Vol. 20, 1998, pp. 282-290. https://doi.org/10.1016/S0141-0296(97)00029-1
  11. Baltay, P. and Gjelsvik, A., “Coefficient of friction for steel on concrete at high normal stress,” Journal of Materials in Civil Engineering, Vol. 2, No. 1, 1990, pp. 46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)