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LOCAL EXISTENCE AND GLOBAL UNIQUENESS
IN ONE DIMENSIONAL NONLINEAR
HYPERBOLIC INVERSE PROBLEMS

JoNnGgsunGg CHOI

ABSTRACT. We prove local existence and global uniqueness in one
dimensional nonlinear hyperbolic inverse problems. The basic key
for showing the local existence of inverse solution is the principle of
contracted mapping. As an application, we consider a hyperbolic
inverse problem with damping term.

1. Introduction and main results

We consider in the domain D = {(z,t)] — 00 < z < oo, t > 0} the
following systems for u = u(z,t);

(1.1)

U — Ugz = F (p(2),u,ut,uz), (x,t) €D,
u(z,0) = ¢(z), u(z,0) =9(z), —oo<z <00

Here we set u; = 9%, u, = 2%, ¢ € C?(~00,00), 1 € C}(—00,00) and
p € C(—00,00). We assume that F = F(&;,£2,£3,&4) is of C? class in
every argument & € R, 1 < i < 4 and defined in R%. Then by successive
approximation method we can prove: For any zg € R we can choose 1 =
n(zg) such that u € C?(A(zg,n)) exists a unique solution to (1.1). Here
Az, n) = {(z,t) e RxR* [0 <t <, 2o+ (t—n) ST < 30— (t~1)}.
Let u(p) = u(p)(z,t) and u(g) = u(g)(z,t) be the solutions to (1.1) with
p = p(z) and g = q(z), respectively.

Nonlinear inverse problem Let 25 € (—00,00) and tp > 0 be given.
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Determine p(z) in some interval containing zo from u(p)(zo,t) and
ur(p)(zo,t), 0 <t < tg.

The purpose of this paper is to prove local existence and global
uniqueness in the inverse problem. Romanov [8] proved local existence,
global uniqueness and stability in determining p = p(z) in the case of
F(€1’§2a§37£4) = 5162) that is, utt(mvt) = u:cz(xat) +p(1)u(m,t) from
the same kind of data (Chapter 2 in [8]). In this paper we discuss lo-
cal existence and global uniqueness in determining p = p(z) for more
general F' = F(p(z),u(z,t),u(z,t), uz(z,t)). In particular F' can de-
scribe the Sine-Gordon equation and the Klein-Gordon equation. Our
methodology is based on Chapter 2 in [8]. In particular, in order to
show local existence, we use the principle of contracted mapping. To
authors’ knowledge, the results for one dimensional inverse problems in
nonlinear hyperbolic equations are not many. For one dimensional in-
verse problems, we further refer for example to Chapter 8 in Isakov [2],
Lavrent’ev, Reznitskaya and Yakhno [5] and Romanov [8]. For other re-
sults of inverse hyperbolic problems, we refer the Gladwell {1}, Khaidarov
[3], Klibanov [4], Rakesh and Symes [6], Romanov [7] and Yamamoto
[10] and references therein. We notice that in multidimensional cases,
the existence problem is quite difficult and we can refer for example to
Romanov [9].

For the statements of our main results, we consider its linearization as
well as (1.1): Set y(z,t) = u(p)(x,t) —u(q)(z,t) and f(z) = p(z) — q(z).
g(z) is given. Then in view of Taylor’s theorem, we have

Yot — Yas = -§§ (q 1 6(p— ), u(q) + B(u(p) - u(a)),
we(a) + 0(us(p) — us(@)), e q) + O (p) — uz<q)>) f

o (q 1 0(p - 9),ulq) + 6(ulp) — ulg),
e (@) + 0w (0) — (@) uo(g) + I(us(p) - uz<q))) y

i (q +6(p— g, ulg) + O(u(p) — u(q)),
e @) + 0(us(p) — ue(0)), e (0) + Oua(p) u£<q>>) -

N % (q +0(p — q),ulg) + O(u(p) - ulg)),
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ur (@) + 0(ue(D) — (), o () + Bt (B) — s (q») v,

where some 6 € (0,1).
We set

(@) = (q+e(p ~ g),u(g) + B(ulp) — u(a)),

ue(q) + 0(us(p) — w1 (@), ua () + Olua(p) — uz<q)>),

ou(rt) = g (q T 0(p - 9),u(g) + O(ulp) — u(g)),

us(q) + 0(us(p) — (@), e (g) + 0ua(p) — uz<q>>),

aala, 1) = 2{ (q L 0(p — g),ulq) + 6(u(p) — u(a)),

s(q) + 6(ue(p) — we(0)), 1o () + Ot (p) uz<q)>) and

as(a, 1) = g—g (q 1 0(p — q),ulg) + 0(u(p) — u(a)),

ws(@) + 0(us(p) — w1(@)), ua () + 0(ue () — ux(q»).

Thus we obtain a system with respect to y:
ytt(m’ t) - yzm(mv t) = al(xat)f(m) + ag(m,t)y(ac,t)
(1.2) + as(e u(s, D) + aslz, Dya(z, ),  (z,1) €D,
y(z,0) = y+(x,0) =0, —00 <z < 00.

Linear inverse problem Let zy € (—00,00) and ¢y > 0 be given and
y(z,t) = y(f){(z,t) be a classical solution to (1.2). Determine f = f(z)
in some interval containing xo from y(f)(zo,t) and y.(f)(xo,t), 0 <t <
to.

Therefore for local existence and global uniqueness of p it is sufficient
to verify:
(Local existence of f) y(f)(zg,t) and y(f)(zo,t), 0 <t < ¢y deter-
mine the existence of h* € [0,#y] such that f(z) exists in C[xg—h*,zo+
h*].
(Global uniqueness of f) If f(z) exists in Clzg — g, zg + tp], then it
is unique.
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THEOREM 1. (Local existence of f) Let to > 0 and 2y € R be
given. We assume

(1) = I8 (2,1) € C(Awo,to)), i =1,2,3,4 and

lai(z,0)] > a >0, z€[zg—ty,zo+ 1)
with some constant «. If the solution y(f)(z,t) to (1.2) satisfies
y(f)(:l?o,t) = fl(t) € CQ[O’tO] and yz(f)(m()at) = f2(t) € Cl[o’to]’
then there is h* € (0,to] such that f exists in C[zo — h*,zo + h*].

THEOREM 2. (Local existence of p) Let tg > 0 and zp € R and
g(z) € Clzg — to, xo + to] be given. We assume
Fe Cz(R4), ¢(CL‘) € Cz[mg —ty, g + to], 1/)(23) S Cl[.’Eo —to, To + to]

and

‘ - (q +0(p — 0), u(q) + 6(u(p) — u(g)),

ue(q) + 0(us(p) — (), 1 (@) + O(usa (p) — ux(q») (@, o>|
>a>0, Ie[wg—to,$0+t0]

with some 6 € (0,1) and some constant o. If the solution u(p)(z.t) to
(1.1) satisfies

u(p)(zo,t) € C*[0,to] and u(p)(zo,t) € C*[0, 1],

then there is h* € (0,1y] such that p = p(z) exists in Clzo — h*, o + h*].

THEOREM 3. (Global uniqueness of f) Let to > 0 and 2y € R be
given. We assume

Bai
ot
la1(z,0)] > a>0 =z € [zp— to, Zo + to)

at(2,t) = ——(x,t) € C(A(zo,%0)), i=1,2,3,4 and

with some constant a and the solution y(f)(z,t) to (1.2) satisfies
y(f)(zo,t) = f1(t) € C*[0,t0] and y.(f)(zo,t) = fa(t) € C1[0, o).
If f € Clxo — to, zo + to] exists, then it is unique.



Local existence and global uniqueness 597

THEOREM 4. (Global uniqueness of p) Let to > 0 and zo € R and
q(z) € Clzg — to,zq + to] be given. We assume

F e C*RY), ¢(z) € C?[xg — to, o + to), ¥(z) € Czo — to, o + to)
and
|‘2—§ (q - 0(p — ), ulg) + 6(u(p) — ulg)),
ue(g) + 0(ua(p) — ue(0)), o () + O(ua(p) — uz<q>>) (@ 0>\
> a >0, $€[xo—t0,l’o+t0]

with some 6 € (0,1) and some constant a and the solution u(p)(z,t) to
(1.1) satisfies

u(p) (1‘0, t) S 02[0, to] and ux(p)(xo, t) € ct [O, t()].
Ifp € Clzo — to, o + to] exists, then it is unique.
The remainder of this paper is organized as following:

e Section 2. Proof of main results
e Section 3. Application

2. Proof of main results

PROOF OF THEOREM 1. From the d’Alembert formula in the domain
A(zg, tg), we obtain the classical solution y(z,t) of (1.2) and its partial
derivatives with respect to z, .

1
y(z,t) = 3 // (alf + a2y + azy, + a4yx) drd§

A(z,t)

x4+t pt— ]a:-§|
/ / a1f + agy + azy: + a4ym)

z=£
t=71

drd§

z=§
=T

t

d€
z=§

t=t—|z—£

1 t
yi(z,t) = 5 / (alf + azy + agyr + a4yz)
—t
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-sign(§ — x)d¢

z=£
t=t—|zx—§|

1 x+t
Yz(z,t) = 3 / (alf + agy + asy; + a4yz)
z—t

yﬂuﬂ:%hﬂw+u®ﬂw+ﬂ+m@—umﬂw—m

+ D) / (altf + agy + (a2 + aze)y.
z—1

+ QatYx + a3yt + a4y:1:t) d€
x=c
t=t—|e—§|

[m@+amﬂx+o—mm—umﬂx—ﬂ

Yzt (l‘, t) =

B[ =

1 Z‘+t
+ 5 / (altf + agy + (012 + a3t)yt
r—t

- sign(§ — x)d¢.
t=t— o€
From y(x0,t) = f1”"(t), Yur(z0,t) = f2'(t), we can obtain the represen-

tation of f(z).
Calculating ¥4+ (2o, )+ ¥zt (To, t) and setting 2o+t = z (o < = < 2o+1p),

+ Qatyz + a3Ye + a4yzt)

f(z) = ;(—i’m [fl”(ff — o) + fo (z — CEO)]

1 T
- ———/ (aref + a2ty + (a2 + aze)yr
a'l (x7 O) Zo

de.

z=¢
t=x—§

+ G4tYz + agY + a4y:rt)

Calculating ys: (o, t) — yzt(To, t) and setting zp—t =2z (zo —tg <z <
330),
1 " I
fz) = m[fl (zo — ) — f2' (20 —x)]

1 *o
- m/l (altf + agy + (a2 + aszs)y

+ G4ty + a3y + a4yzt) dg.
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Therefore, we get

sign(zg — )

f(x) = folz) +

(1,1(1',0)
X / (a1tf +agy + (a2 + as1)y; + ageyz + azys + a4yact> dg,
o lese
where
fo(z) = ! [f1"(|z — mol) + sign(z — m0) f2'(|z — zol)].
(11(517,0)

Despite of the presence of a discontinuous multiplier sign(z — x¢), the
function fy is continuous on [zy — to, Zo + to]. Because f2"(0) =0.

In the domain A(zg, ty), we define the closed system of integral equations
Iy Y, Yt Yz, Yst, and y,¢ by operator equation

g=Ag

g= (91,92793,94,95596) (:Bat) € (C (A(xﬂ,tO)))6a

where g is the vector function of two variables x, ¢t with components in
which case

g1=F 92=Y, 93 =Yty 94 =Yz, 95 = Ytt, 96 = Yar-
The operator A is determined by the function g and has the form

A= (A1, As, A3, Ay, As, As)

sign(zg — x) /I
Arglz,t) = ) 4 o (G t ) d
1g(£L‘ ) go1 (:U )+ al(x,O) 2o (l‘ ) e 6
t=lz—¢|
1
Azg(z,t) = 5 // (a191 + aggo + azgs + a4g4) drdg
Alz.t) b
1 x+t
Asg(z,t) = 5/ (a191 + asgs + asgs + 0494) d§
r—t z=£
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1 [=*t .
Ayg(z,t) = 3 / (a1gl + agg2 + asgs + a4g4) - sign(§ — x)d¢
et =t el
sign(zg —z —t) [=T
ASQ(:E,t) =905(mat) + g ( 02 )/ (G(‘T7t)) df
o -
sign(zg — z + t) /z"t
+ > ; (G.) &
t=lz—f—¢
+3 / (een)| e
t=t—|o—¢}
sign(zg —z —t) [
Aagle,t) = gos(t) + LD =EZ0 [ (G| e
o t:ﬁif—a
pame—tma) (o)
2 o ’ r=£
t=|z—t—¢|

+ % /z it (G(a:, t))

z=E£

t=t—lz—¢|
where
go1 = fo, 902 =0, goz =0, gos =0,
1 [ A"(lz+t—=zo|) +sign(x +¢ — zo) f2' (I + ¢ — z0])
905 = 5 [+f1//(]$ —t—xq|) +sign(z —t —zo) f2' (jz — t — $o|)} and
1 f1"(lz +t = zo]) +sign(z +t — z0) f2'(|z + ¢ — zo])
gos = 5 [—fl”ﬂm —t—xg)|) —sign(z —t — zo) fo (lx —t — m0|)}
and

G(z,t) = (a1tg1 + astg2 + (a2 + ast)gs + a4gs + asgs + a496) (z,t).

Denote

to) = Jt
llgll(to) 22K R gk (z,1)]

and
gg(x,t) = (901,9027903,904,905,906) (x,t).
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Consider in the space C (A(zo, k)%, 0 < h < tg, the following set

m(h) = {g(z,t) | g — goll (R) < llgoll (t0) } -

Obviously, m(h) is not empty set. Moreover on the set m(h) inequality

lgll(R) < 2llgol|(to)

is valid. To use the principle of contracted mapping on the set m(h)
the operator A can be controlled by sufficiently small hA. Indeed, for
g € m(h), we obtain

7C 14C
|A1g — go1| < —th”g”(h) < Th“go“(to)

|A29 — go2| < 2CR?||g||(R) < 4Ch?|igoll(to)
|Asg — gos| < 4Ch||glI(h) < 8Chl|gol|*(to)
|Asg — gos| < ACh|igl|(R) < 8Ch|Igoll(to)
|Asg — gos| < 14Ch|lgll(h) < 28Chl|go|l(to)
|Asg — gos| < 14Ch|g||(h) < 28Chl|golI*(to),

where

1

C = nax, llasllr and flafly =

1
a=0

o

———ai(a:,t),.

max
(z,t)EA(z0,h)

Hence, we see

14C '
149 - gl(8) < s (24,401, 286h ) Lol o) < ol o)

for any

h < h* = min o 1 ! t
=0 14C’ 2 /C’28C" ° )"

This means the operator A self-maps the set m(h), h < h*. On the
other hands, let ‘), ¢(® be any two elements of the set m(h), h < h*.
From the following estimates

Agt) - Alg(2)i < %h Hg“) - g(z)H (h)
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Azg(l) - Azg(g) < 2Ch? Hg(l) - g% H (h)
Asg) — Azg®| < 4Ch Hg(l) —g® H (h)
Asgth — Agg®| < 4Ch Hg(” — g% H (h)

459 — Asg®| < 14Ch gV - g (B)

A6g™) — Acg®| < 14Ch g - g™ (h),

we obtain
”Ag(l) - Ag<2>H (h) < max (%mc;ﬁ, 14C’h) Hg“) - g<2>H (h)
h
< W _ @
< oox o = 9@ ),

i.e., the operator A is a contraction mapping for any h < h*. By the
principle of contracted mapping, we uniquely find y, y:, Y, Y2t and f
in the domain A(zg, h*). Especially f which is the solution to the linear
inverse problem uniquely exists in C[zq — h*, 2o + h*]. O

PROOF OF THEOREM 2. By setting y(z,t) = u(p)(z,t) — u(q)(z,t),
(:I:at) € A("1:071:0) and f(ﬂ?) = p(x) - Q(x)’ T € [.Z‘() = to,To + t0]7 we
linearlize (1.1) to (1.2). Here g(x) is given. The regularity of F' and the
below boundedness of gé—l‘: satisfy the assumption of Theorem 1. Assume
that

U(p) ("EOv t) = u(q)(an t) and Uy (p) ('T07 t) = Ug (q)(an t)v te [Oa tO]
that is,
Y(Zo,t) = Ya(z0,t) =0, t € [0,20].

This means A is a linear operator because go(z,f) = 0. Therefore the
fixed point of A is g(z,t) = (f,y,yt,ym,ytt,ym) = 0. This implies the
proof is completed. a

PROOF OF THEOREM 3. Suppose that f1(z) and f?(z) are a couple
of different solutions to the linear inverse problem in C[zg — o, 2o + to].
Then according to Theorem 1, there is a interval [z1, 2] such that

zp =sup{z | f1(§) = f(€), mo<E<w<wo+to} and
Ty = inf{z | FHE = F2(8), m0—to <z <E< a0}
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Since fl(z) # f*(z) on [my — to, o + to, then at least zo < zg + £
or 1 > xg — tg. Without loss of generality, let x5 < zg + t3. Then
f'(z) and f*(z) coincide on [zy,z2]. Notice that the function y(z, ) is
a solution to (1.2) with f!(z) or f2(z) in the domain A(xo,ty). Hence
we obtain

y(-’EQ, t) =0 (t) and yl‘(an t) = g2(t)’ te [0,-750 + tO - IL‘Q].

The uniqueness result of local version says that there is a h € (0, to)
such that the linear inverse solution uniquely exists on [xz, s + h), i.e.,
fH(z) = f*(z) on the same interval. This fact contradicts the definition
of z9. The proof is completed. a

ProOF OF THEOREM 4. In the theorem 2, we proved u(p)(zo,t) =
u(g)(®o,1) and u(p)a(wo,t) = u(q)e(zo,t) determine f = 0 on [vy —
h*,zg + h*]. Moreover if we apply the argument of proof of theorem 3,
then we obtain f = 0 on [zg — tg, o +tg]. That is, the global uniqueness
of p is proved. a

3. Application

As the first application, we consider the hyperbolic equation with a
damping term.

(3.1) { u(T,t) = sz (7, 1) = p(2)ue(z,t),  (z,t) € D,

u(z,0) = ¢(z), u(z,0) = ¢(z), -0 < T < oo.

Instantly, we can obtain the local existence of p(z) in (3.1) from inverse

data f1(¢) and fa(2).
THEOREM 3.1. Let tp > 0 and x¢ € R be given. We assume
¢(CIJ’) S Cz[.’L’o —tg,z0 + to], z/z(a:) (S Cl[!Eo — 1o, 2o + to] and

[Y(z)] >a >0, z€zo—to,To+ to

with some constant o. If the solution u(p)(z,t) to (3.1) satisfies u(p)
(zo,t) = f1(t) € C?[0,10] and u,(zo,t) = fo(t) € C* [0,t0], then there is
h' € (0,tp) such that p(x) exists in Clzo — b,z + 1]
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PrOOF. From the d’Alembert formula in the domain A(zg,%p) and
assumptions, we obtain

(‘,I: t) - ’Lto z, t ut Ea dﬁd’l" (‘T’t) € A((Eo,to),
el

where
1
w(a,t) = 5 [#(@+1) - 9la — t)] / w(e
Next we write only a closed integral system,

) = o) + 20 [ pepune e~ ali,

T+t

w(z,t) = Juoe )+ 3 [ pEu(E - lg—a)de and

—t

2
ug (z,t) = 52 —up(z,t) + %{p(m + tu(z +t,0) + p(z — thu(z — ¢, 0)}
-+t
3 [ pleun(et— e~ el
where
. A" (lz = zo|) + sign(z — zo) f2' (|2 — o)
- 82 62
po(z) w(z) (8152 + sign(z — )m> up(€,T) Tf1jz_‘10|

The closed integral system above p(z), u;(z,t) and uy(z,t) determine
an operator equation g = Ag like as the proof of Theorem 1. To apply
the principle of contracted mapping to the operator A on a suitable set,
we can find Al € (0,1]. O

REMARK 3.2. The proof of global uniqueness depends on the result
of local existence. It is the reason that we state only Theorem 3.1.

The second application is the following

3.9 utt(xat) - ua:x(x7t) = F(p(a:),u(x,t)), (x’t) € D,
(32) u(z,0) = ¢(x), u(z,0) = ¥(x), —00 < z < 00.
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If F = F(&,62) is C? class, then we obtain (3.3) as the modification of
(3.2).

(33) Yer (2, 1) — Yoo (2, 1) = r(z, )y(z, t) + Rz, t) f(z), (z,t) € D,
' y(z,0) = y4(z,0) =0, —0 < x < 00.

In this case,

r@i)=Qg<q+ﬂp~®m@%+ﬂwm—UWD) and

Rz, 1) = F@+mpq><mwm@—mm)

0
23
where some 8 € (0,1). We notice that a relation between the nonlinear
inverse problem (3.2) and the linear inverse problem (3.3) is the same
as it between (1.1) and (1.2).

THEOREM 3.3. Let tg > 0 and z¢ € R be given. We assume

o0 o
Er(m,t), aR(m,t) € C(A(zo,t9)) and
|R(z,0)] > a >0, z€Clzo-—to,Zo+ to]

with some constant a. If the solution y = y(f)(z,t) to (3.3) satisfies

y(f)(zo,t) = f1(t) € C*[0,t0] and yu(f)(zo,t) = fa(t) € C'[0,10],
then there is h € (0,tg] such that f(z) exists in C[xo — h,xo + A].

REMARK 3.4. Theorem 3.3 can be proved along the same process in
the proof of Theorem 1.

REMARK 3.5. As more concrete example of the nonlinear term F'(£;,
€2,&3,€4), there are the following

p(z) sin u(z, t)(Sine-Gordon eq.), p(z)e“®? | p(z) lu(z, )1 | u(z, t) etc.

in many applied fields. Inverse problems to one dimensional hyperbolic
equations containing the nonlinear terms above can be considered. From
our results, we can establish local existence and global uniqueness of
inverse solution p(z) for the inverse problem from the same kind of
datum.
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