• Matsugu, Yasuo (Department of Mathematical Sciences Faculty of Science Shinshu University) ;
  • Miyazawa, Jun (Department of Mathematical Sciences Faculty of Science Shinshu University) ;
  • Ueki, Sei-Ichiro (Department of Mathematical Sciences Faculty of Science Shinshu University)
  • Published : 2002.09.01


Let B denote the unit ball in $C^n$, and ν the normalized Lebesgue measure on B. For $\alpha$ > -1, define $dv_\alpha$(z) = $c_\alpha$$(1-\midz\mid^2)^{\alpha}$dν(z), z $\in$ B. Here $c_\alpha$ is a positive constant such that $v_\alpha$(B) = 1. Let H(B) denote the space of all holomorphic functions in B. For $p\geq1$, define the Bergman-Privalov space $(AN)^{p}(v_\alpha)$ by $(AN)^{p}(v_\alpha)$ = ${f\inH(B)$ : $\int_B{log(1+\midf\mid)}^pdv_\alpha\;<\;\infty}$ In this paper we prove that a function $f\inH(B)$ is in $(AN)^{p}$$(v_\alpha)$ if and only if $(1+\midf\mid)^{-2}{log(1+\midf\mid)}^{p-2}\mid\nablaf\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case 1<p<$\infty$, or $(1+\midf\mid)^{-2}\midf\mid^{-1}\mid{\nabla}f\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case p = 1, where $nabla$f is the gradient of f with respect to the Bergman metric on B. This is an analogous result to the characterization of the Hardy spaces by M. Stoll [18] and that of the Bergman spaces by C. Ouyang-W. Yang-R. Zhao [13].


Bergman-Privalov spaces;Privalov spaces;Bergman spaces;Riesz measure;Hardy-Orlicz spaces


  1. Ann. Polon. Math. v.35 Mean growth and Taylor coefficients of some topological algebras of analytic functions M. Stoll
  2. Complex Variables Theory Appl. v.20 On the boundary behavior of functions holomorphic on the ball B. R. Choe;H. O. Kim
  3. Boundary Properties of Singled-Valued analytic Furnctiones(Russian) I. I. Privalov
  4. Complex Variabes Theory Appl. v.17 A Littlewood-Paley inequality and a characterization of BMOA J. S. Choa;B. R. Choe
  5. Tenbner Verlagsgesellschaft Topics in Theory $ A_{\alpha}^{{\alpha}_{\rho}}$ Spaces A. E. Djrbashian;F. A. Shamoian
  6. Dissertations Math. v.276 Holomorphic Sobolev spaces on the ball F. Beatrous;J. Burbea
  7. Far East J. Math. Sci v.2 Invariant subspaces of the Privalov spaces Y. Matsugu
  8. Indian J. Math. v.40 Composition operators on Bergman-Orlicz type spaces S. D. Sharma;J. Raj;R. Anand
  9. Invariant Potential Theory in the Unit Ball of Cⁿ M. Stoll
  10. Arch. Math. v.71 Isometries of some F-algebras of holomorphic functions Y. Iida;N. Mochizuki
  11. Nihonkai Math. J. v.7 Composition operators on some F-algebras of holomorphic functions J. S. Choa;H. O. Kim
  12. Trans. Amer. Math. Soc. v.347 Characterizations of Bergman spaces and Bloch spaces in the unit ball of Cⁿ C. Ouyang;W. Yang;R. Zhao
  13. Doklady Math. v.60 Linear isometry groups of Privalov's spaces of holomorphic functions of several variables A. V. Subbotin
  14. Proc. Amer. Math. Soc. v.105 Algebras of holomorphic functions between $H^p;and N_*$ N. Mochizuki
  15. Math. Notes v.65 Functional properties of Privalov spaces of holomorphic functions in several variables A. V. Subbotin
  16. J. Math. Soc. Japan v.54 Isometries of weighted Bergman-Privalov spases on the unit ball of Cⁿ Y. Matsugu;S. Ueki
  17. J. Austral. Math. Soc.(to appear) A characterization of weighed Bergman-Orlicz spaces on the unit ball in Cⁿ Y. Matsugu;J. Miyazawa
  18. J. London Math. Soc. v.48 A Characterization of Hardy spaces on the unit ball of Cⁿ M. Stoll
  19. J. Math. Anal. Appl. v.257 Composition operators between nevanlinna-type spaces J. S. Choa
  20. Function Theory on the Unit Ball of Cⁿ W. Rudin
  21. Math. Scand. v.80 A characterization of Hardy-Orlicz spaces on Cⁿ C. Ouyang;J. Riihentaus

Cited by

  1. Characterizations of Hardy-Orlicz and Bergman-Orlicz spaces vol.141, pp.5, 2007,