DOI QR코드

DOI QR Code

CYCLOTOMIC UNITS AND DIVISIBILITY OF THE CLASS NUMBER OF FUNCTION FIELDS

  • Ahn, Jae-Hyun (Department of Mathematics KAIST) ;
  • Jung, Hwan-Yup (Department of Mathematics)
  • Published : 2002.09.01

Abstract

Let $textsc{k}$$F_{q}$(T) be a rational function field. Let $\ell$ be a prime number with ($\ell$, q-1) = 1. Let K/$textsc{k}$ be an elmentary abelian $\ell$-extension which is contained in some cyclotomic function field. In this paper, we study the $\ell$-divisibility of ideal class number $h_{K}$ of K by using cyclotomic units.s.s.

Keywords

function field;class number;cyclotomic unit

References

  1. Bull. Amer. Math. Soc.(N.S.) v.8 no.1 Exponential growth of the l-rank of the class group of the maximal real subfield of cyclotomic fields G. Cornell https://doi.org/10.1090/S0273-0979-1983-15082-6
  2. Illionis J. Math. v.32 no.3 The class group of an abelian-l-extension G. Cornell;M. Rosen
  3. Trans. Amer. Math. Soc. v.341 no.1 Circular units of function fiels F. Harrop https://doi.org/10.2307/2154629
  4. Trans. Amer. Math. Soc. v.189 Explicit class field theory for rational function fields D. R. Hayes https://doi.org/10.2307/1996848
  5. Tokyo J. Math v.24 no.1 Central extensions and Hasse norm principle over function fields S. Bae;H. Jung https://doi.org/10.3836/tjm/1255958314
  6. Acta Arith v.96 no.3 Racines d'unites cyclotomiques et divisibilite du nombre de classes d'un corps abelien reel C. Greither;S. Hachami;R. Kucera https://doi.org/10.4064/aa96-3-5
  7. J. Number Theory v.56 no.1 On the Stickelberger ideal and circular units of a compositum of qusdratic fields R. Kucera https://doi.org/10.1006/jnth.1996.0008
  8. Cyclotomic units and Stickelberger idenals of global function fields(preprint) S. Bae;H. Jung;J. Ahn https://doi.org/10.1090/S0002-9947-03-03245-8
  9. J. Number Theory v.13 no.3 The class number of cyclotomic function fields S. Galovich;M. Rosen https://doi.org/10.1016/0022-314X(81)90021-4