DOI QR코드

DOI QR Code

INEQUALITIES FOR THE HILBERT TRANSFORM OF FUNCTIONS WHOSE DERIVATIVES ARE CONVEX

  • Dragomir, S.S.
  • Published : 2002.09.01

Abstract

Using the well known Hermite-Hadamard integral inequality for convex functions, some inequalities for the finite Hilbert transform of functions whose first derivatives are convex are established. Some numerical experiments are performed as well.

Keywords

finite Hilbert transform;Hermite-Hadamard inequality

References

  1. J. Inst. Math. Appl. v.26 Error estimates for three methods of evaluating Cauchy principal value integrals B. Noble;S. Beighton https://doi.org/10.1093/imamat/26.4.431
  2. J. Comput. Appl. Math. v.66 A note on Peano costants of Gauss-Konrod quadrature schemes S. Ehrich https://doi.org/10.1016/0377-0427(95)00173-5
  3. Bull. Amer.Math.Soc. v.48 A note on Hilbert's operator K. Kober https://doi.org/10.1090/S0002-9904-1942-07688-9
  4. Numer. Math. v.19 Some Gauss type formulae for the evaluation of Cauchy principal value integrals D. B. Hunter https://doi.org/10.1007/BF01404924
  5. Approx. Theory Appl.(N.S.) v.11 no.4 Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on a piecewise linear interpolation K. Diethelm
  6. Methods of Numerical Integration(2nd Ed.) P. J. Davis;P. Rabinowitz
  7. Math. Nachr. v.169 Holder continuous functions functions and the finithe Hilbert trans form S. Okada;D. Elliot https://doi.org/10.1002/mana.19941690116
  8. Corrigendum: Math. Comp. v.45 Gauss-Konrod integration rules Cauchy principal value integrals P. Rabinowitz
  9. J. Comput. Appl. Math v.56 no.3 Uniform convergence to optimal order quadrature rules for Cauchy principal value integrads K. Diethelm https://doi.org/10.1016/0377-0427(94)90086-8
  10. Proc. Sympos. Appl. Math. v.48 Error estimates for a quadrature rule for Cauchy principal value integrals K. Diethelm https://doi.org/10.1090/psapm/048/1314858
  11. IMA J. Numer. Anal v.13 Error estimates for generalized compound quadrature formulas P. Kohler https://doi.org/10.1093/imanum/13.3.477
  12. Computing v.15 Quadrature formaulas for Cauchy principal value integrals M. M. Chawla;N. Jayarajan https://doi.org/10.1007/BF02260318
  13. Fourier Analysis and Approximation Theory v.1 P. L. Butzer;R. J. Nessel
  14. Approx. Theory Appl.(N. S.) v.13 no.3 On the error of quadrature formulae for Cauchy principal value intefrals based on piecewise interpolation P. Kohler
  15. Computing v.29 The numerical evaluation of one-dimensional Cauchy principal value intergrals G. Monegato https://doi.org/10.1007/BF02246760
  16. Inequality Theory and Applications v.1 Some inequalities for the finite Hilbert transform N. M. Dragomir;S. S. Dragomir;P. Farell;Y. J. Cho(Eds.);J. K. Kim(Eds.);S. S. Dragomir(Eds.)
  17. Numer. Math. v.54 On the unidorm convergence of Gaussian quadrature rules for cauchy principal value integrals G. Criscuolo https://doi.org/10.1007/BF01396323
  18. Computing v.55 Asymptotically sharp error estimates for modified compound quadrature formulae for Cauchy principal value integrals P. Kohler
  19. Math. Comp. v.33 Gauss type quadrature rules for Cauchy principal value integrals D. Elliott;D.F.Pager https://doi.org/10.2307/2006042
  20. Boundary Value Problems(English translation) F. D. Gakhov
  21. BIT no.4 On the convergence of Hunter's method for Cauchy principal value integrels P. Rabinowitz https://doi.org/10.1007/BF01931261
  22. Springer-Verlag Singular Intergral Operators(English translation) S. G. Mikhlin;S. Prossdorf
  23. Computing v.48 On the numerical integration of certain singular integrals, Computing H. W. Stolle;R. StrauB https://doi.org/10.1007/BF02310532
  24. Computing v.52 Modified compound quadrature rules for strongly singular integrals K. Diethelm https://doi.org/10.1007/BF02276881
  25. The application of Bullen's inequality for convex functions to the finite Hibert transform S. S. Dragomir
  26. Ricerche Mat. v.35 On the convergence of Gauss quadrature rules for the cauchy principal value integrals G. Criscuolo;G. Mastroianni
  27. Numer. Math. Peano kernels and bounds for the error constants of Gaussian and related quadrature rules for Cauchy principal value integrals K. Diethelm