Improvement Study on Vertical Growth of Carbon Nanotubes and their Field Emission Properties at ICPCVD

유도결합형 플라즈마 화학기상증착법에서 탄소나노튜브의 수직성장과 전계방출 특성 향상 연구

  • 김광식 (한국화학연구원 화학소재연구부) ;
  • 류호진 (한국화학연구원 화학소재연구부) ;
  • 장건익 (충북대학교 공과대학 재료공학과)
  • Published : 2002.08.01


In this study, the vertically well-aligned CNTs were synthesized by DC bias-assisted inductively coupled plasma hot-filament chemical vapor deposition (ICPHFCVD) using radio-frequence plasma of high density and that CNTs were vertically grown on Ni(300 )/Cr(200 )-deposited glass substrates at 58$0^{\circ}C$. This system(ICPHFCVD) added to tungsten filament in order to get thermal decompound and DC bias in order to vertically grow to general Inductively Coupled Plasma CVD. The grown CNTs by ICPHFCVD were developed to higher graphitization and fewer field emission properties than those by general ICPCVD. In this system, DC bias was effect of vortical alignment to growing CNTs. The measured turn-on fields of field emission property by general ICPCVD and DC bias-assisted ICPHFCVD were 5 V/${\mu}{\textrm}{m}$ and 3 V/${\mu}{\textrm}{m}$, respectively.


  1. Nature v.354 Helical microtubles of graphic carbon S. Iijima
  2. 전기전자재료학회지 v.13 no.5 탄소나노튜브의 전자구조 김용현;심홍선;김용성;장기주
  3. The Science and Technology of Carbon Nanotubes K. Tanaka;T. Yamabe;K. Fukui
  4. 전기전자재료학회지 v.13 no.5 탄소나노튜브의 전자적물성 김동호
  5. Carbon v.38 Field emission from carbon nanotubes and its application to electron source Y. Saito;S. Uemura
  6. Carbon v.7 Synthesis of nanotubes via catalytic pyrolysis of acetylene: A SEM study T.E. Muller;D.G. Reid;W.K. Hsu;J.P. Hare;H.W. Kroto;D.R.M. Walton
  7. Chem. Phys. Lett. v.337 Growth and field emssion of carbon nanotubes on sodalime glass at 550℃ using thermal chemical vapor deposition C.J. Lee;J.H. Park;S.W. Han;J.S. Ihm
  8. Surf. Coat. Tech. v.131 Growth characteristics of carbon nanotubes by plasma enhanced hot filament chemical vapor deposition J.H. Han;B.S. Moon;W.S. Young;J.B. Yoo;C.Y. Park
  9. Science v.282 Synthesis of large arrays of well-aligned carbon nanotubes on glass Z.F. Ren;Z.P. Huang;J.W. Xu;J.H. Wang;P. Bush;M.P. Siegal;P.N. Provencio
  10. SID' 98 Digest Carbon nanotube FED element S. Uemura;T. Nagasako;J. Yotani;T. Shimojo;Y. Saito
  11. Carbon v.39 Carbon materials for the electrochemical storage of energy on capacitors E. Frackowiak;F. Beguin
  12. Synthetic Metals v.113 Hydrogen adsorption and storage in carbon nanotubes S.M. Lee;K.S. Park;Y.C. Choi;Y.S. Park;J.M. Bok;D.J. Bae;K.S. Nahm;Y.G. Choi;S.C. Yu;N.G. Kim;T. Frauenheim;Y.H. Lee
  13. Appl. Phys. Lett. v.73 Field emission from single wall carbon nanotube films J.M. Bonard;J.P. Salvetat;T. Stokli;W.A. Heer;L. Forro;A. Chatelain
  14. J. Phys. Chem. solids Carbon films with high density nanotubes produced using microwave plasma assisted CVD Q. Zhang;S.F. Yoon;J. Ahn;B.Gan;Rusli;M.B. Yu
  15. Appl. Phys. Lett. A: Materials Science and Processing v.70 Solar production of single-wall carbon nanotubes: growth mechanisms studied by electron microscopy and Raman spectroscopy L. Alvarez;T. Guillard;J.L. Sauvajol;G. Flamant;D. Lapiaze
  16. Synthetic Metals v.103 Raman characterization of single walled carbon nanotubes and PMMA-nanotubes composites M. Lamy De La Chapelle;C. Stephan;T.P. Nguyen;S. Lefrant;C. Journet;P. Bernier;L. Alvarez;D. Laplaze;E. Munoz;A. Benito;W. K. Maser;M. T. Martinez;G.F. De La Fuente;T. Guillard;G. Flamant
  17. Diam. Relat. Mater. v.9 Energy distribution of field emitted electrons from carbon nanotubes R. Schetesser;R. Cllazo;C. Bower;O. Zhou;Z. Sitar
  18. Appl. Phys. Lett. v.75 Large current density from carbon nanotube field emitters W. Zhu;C. Bower;O. Zhou;G. Kochanski;S. Jin
  19. 전기전자재료학회지 v.14 no.10 유도결합형 플라즈마 화학기상 증착법을 이용한 탄소나노튜브의 성장 및 전계방출 특성 연구 김광식;류호진;장건익