DOI QR코드

DOI QR Code

Synthesis of ZnO Nanowires and their Characteristic Properties

ZnO 나노와이어의 합성 및 특성

  • Published : 2002.08.01

Abstract

Gray-colored materials were synthesized from ball-milled ZnO powders under a thermal annealing at $1380^{\circ}C$ with an argon carrier gas for 3 hours. The synthesized materials were identified to be wurtzitic hexagonal structured ZnO nanowires by X-ray diffraction and scanning electron microscopy. The ZnO nanowires have the long cylinder-like shape of which cross-section is a circle, and these nanowires are in the range 15~40nm width and 10~70 $\mu m$ length, respectively. Transmission electron microscopy revealed that these nanowires are single-crystalline and grow along [110] direction. The optical properties of the ZnO nanowires were investigated with photoluminescence. The analytic results revealed that ZnO nanowires have the singly ionized oxygen vacancies in the surface lattices, as they emit strong green light in room temperature PL. In addition, the growth mechanism of the ZnO nanowires can be described by the vapor-solid procedures.

References

  1. Phys. Rev. Lett. v.68 New one-dimensional conductors: graphitic microtubules N. Hamada;S. Sawada;A. Oshiyama https://doi.org/10.1103/PhysRevLett.68.1579
  2. J. of KIEEME v.14 no.9 Growth of carbon nanotubes depending on etching condition of Ni-catalytic layer S.H. Jeong;G.E. Jang;H.J. Ryu
  3. Science v.279 A laser ablation method for the synthesis of crystalline semiconductor nanowires A.M. Morales;C.M. Lieber https://doi.org/10.1126/science.279.5348.208
  4. Science v.277 Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction W. Han;S. Fan;Q. Li;Y. Hu https://doi.org/10.1126/science.277.5330.1287
  5. J. Cryst. Growth v.213 Formation of GaN nanorods by a sublimation method J. Y. Li;X.L. Chen;Z. Y. Qiao;Y. G. Cao;Y.C. Lan https://doi.org/10.1016/S0022-0248(00)00390-0
  6. J. Mater. Res v.12 no.11 Nanostructured high-temperature superconductors: creation of strong-pining columnar defects in nanorod/ superconductor composites P. Yang;C.M. Lieber https://doi.org/10.1557/JMR.1997.0393
  7. Science v.291 Nanobelts of semiconducting oxides Z.W. Pan;Z.R. Dai;Z. L. Wang https://doi.org/10.1126/science.1058120
  8. Adv. Mater. v.13 Catalytic growth of zinc oxide nanowires by vapor transport M.H. Huang;Y. Wu;H. Feick;N. Tran;E. Weber;P. Yang https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  9. Solid State Commun v.109 Ga₂O₃nanowires prepared by physical evaporation H.Z. Zhang;Y.C. Kong;Y.Z. Wang;X. Du;Z.G. Bai;J.J. Wang;D.P. Yu;Y. Ding;Q.L. Hang;S.Q. Feng https://doi.org/10.1016/S0038-1098(99)00015-0
  10. Solid State Commun v.118 Ultra-long single crystalline nanoribbons of tin oxide Z.R. Dai;Z.W. Pan;Z.L. Wang https://doi.org/10.1016/S0038-1098(01)00122-3
  11. Proc. 2001 Summer Conf. KIEEME Mass production of carbon nanotubes using Vapor Phase Growth S.C. Lyu;T.J. Lee;C.J. Lee
  12. Appl. Phys. Lett. v.80 no.3 β-Ga₂O₃ nano-wires synthesized from milled GaN pow-ders B.C. Kim;K.T. Sun;K.S. Park;K.J. Im;T. Noh;M.Y. Sung;S. Nahm;Y. N. Choi;S.S. Park;S. Kim https://doi.org/10.1063/1.1435073
  13. Science v.276 Will UV lasers beat the blues? R.F. Service https://doi.org/10.1126/science.276.5314.895
  14. J. of KIEEME v.14 no.12 Synthesis of β-Ga₂O₃nanobelt and nanopartivles from mechanically ground GaN powders with different thermal annealing atmospheres B.C. Kim;K.T. Sun;K.S. Park;K.J. Im;T.Y. Noh;S. Nahm;M.Y. Sung;S. Kim
  15. Progress in Mater. Sci. v.46 Mechanical alloying and milling C. Suryanarayana https://doi.org/10.1016/S0079-6425(99)00010-9
  16. Appl. Phys. Lett. v.72 no.25 Room-temperature ultraviolet laser emission from self-assembled ZnO micro-crystallite thin films Z.K. Tang;G. K. L. Wong;P. Yu;M. Kawasaki;A. Ohtomo;H. Koinuma;Y. Segawa https://doi.org/10.1063/1.121620
  17. Appl. Phys. Lett. v.78 no.4 Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach Y.C. Kong;D.P. Yu;B. Zhang;W. Fang;S. Q. Feng https://doi.org/10.1063/1.1342202
  18. J. Appl. Phys. v.79 no.10 Mechanisms behind green photoluminescence in ZnO phosphor powders K. Vanheusden;W. L .Warren;C.H. Seager;D.R. Tallant;J. A. Voigt;B. E. Gnade https://doi.org/10.1063/1.362349
  19. Phys. Rev. B. v.38 no.14 Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electron states by high-resolution magnetooptics and excitation spectroscopy J. Gutowski;N. Presser;I. Broser https://doi.org/10.1103/PhysRevB.38.9746
  20. J. Appl. Phys. v.84 no.7 Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization Y. Chen;D. M. Bagnall;H. Koh;K. Park;K. Hiraga;Z. Zhu;T. Yao https://doi.org/10.1063/1.368595
  21. J. Phys. D: Appl. Phys. v.34 Resonant raman scsttering and photo-luminescence from high-quality nanao-crystalline ZnO thin films prepared by thermal oxidation of ZnS thin films X.T. Zhang;Y. C. Liu;Z. Z. Zhi;J. Y. Zhang;Y. M. Lu;D. Z. Shen;W. Xu; G. Z. Zhong;X. W. Fan;X. G. Kong https://doi.org/10.1088/0022-3727/34/24/302
  22. J. Cryst. Growth. v.184/185 Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE D. M. Bagnall;Y.F. Chen;M. Y. Shen;Z. Zhu;T. Goto;T. Yao https://doi.org/10.1016/S0022-0248(98)80127-9
  23. J. Mater. Science v.35 Morphologies and growth mechanisms of aluminum nitride whiskers by SHS method-Part Ⅰ,Ⅱ G. Jiang;H. Zhuang;J. Zhang;M. Ruan;W. Li;F. Wu;B. Zhang https://doi.org/10.1023/A:1004780213488