DOI QR코드

DOI QR Code

A Study on the Fatigue Crack Propagation Analysis Using Equivalent Stress Distribution

등가분포응력을 이용한 피로균열전파해석에 관한 연구

  • 김창욱 (한국선급 선체기술부 화물선팀) ;
  • 노인식 (충남대학교 선박해양공학과) ;
  • 도관수 (한국선급선체기술부 탱커팀)
  • Published : 2002.05.01

Abstract

From the viewpoint of linear fracture mechanics, the crack propagation behavior of two different structures having the same K-a relationship could be considered identical. In this study the stress distribution in an infinitely wide cracked plate with the same K-a relationship as in a real structure is defined as the equivalent stress distribution. Fatigue life of a real structural element can be predicted by applying the equivalent stress distribution to a simple structural element, and performing a fatigue crack propagation analysis. The K-a relationship for a structural member can be estimated by a finite element method or a simplified prediction method. The validity to obtain effective crack driving stresses by using the equivalent stress-distribution is examined.

Keywords

fatigue;fracture mechanics;equivalent stress distribution;effective crack driving stress

References

  1. A.C. Kaya and F. Erdogan, “Stress Intensity factors and COD in Orthotropic Strip”, International Journal of Fracture, Vol. 16, pp. 171-190, 1980. https://doi.org/10.1007/BF00012620
  2. 豊貞, 疲勞壽命評價論, 九州大學 工學部, 1996
  3. 豊貞, 丹羽, 山口, “長いき裂に對する疲勞き裂遲 延減速現象とき裂停留條件について-RPG規準による疲勞き裂伝播擧動の硏究(第6報)”, 日本造船學會論文集, Vol.176, pp. 439-446, 1994
  4. 豊貞, 丹羽, 後藤, 坂井, “ ${\Delta}K_{RPG}$の物理的意味と構造物の疲勞壽命推定法”,日本造船學會論文集, Vol.180, pp. 539-547, 1996.
  5. H. Tada, P.C. Paris and G.R. Irwin, “The Stress Analysis of Cracks Handbook”, 2nd Edition, Paris Productions Inc., St. Louis, 1985.
  6. W. Elber, “The Significance of Fatigue Crack Closure”, ASTM STP-486, 1971.
  7. 김창욱, 노인식, 도관수, 신병천, “균열개폐구 거동을 고려한 피로균열전파해석모델의 개발: 수치 계산”, 대한조선학회 논문집, 제38권, 제3호, pp. 84-92, 20012.
  8. 岡村弘之, 線形破壞力學入門, 培風館, 1976
  9. 김창욱, 노인식, 반헌호, 신병천, “균열개폐구 거동을 고려한 피로균열전파해석모델의 개발: 균열 개폐구 거동의 모형화”, 대한조선학회 논문집, 제38권, 제3호, pp. 74-83, 20011.
  10. 김대수, 김창욱, 노인식, “응력강도계수의 간이 추정법”, 대한조선학회 1999년 추계연구발표회, 1999.
  11. J.C. Newman, “A crack closure model for predicting fatigue-crack growth under aircraft spectrum loading”, NASA Tech. Memo. 81941, 1981
  12. 豊貞, 丹羽, “RPG荷重のシミュレション”, 日本造船學會論文集, Vol.176, pp. 427-438, 1994.