Gravity-Geologic Prediction of Bathymetry in the Drake Passage, Antarctica

Gravity-Geologic Method를 이용한 남극 드레이크 해협의 해저지형 연구

  • 김정우 (세종대학교 지구정보과학과 지구정보연구소) ;
  • 도성재 (고려대학교 지구환경과학과) ;
  • 윤순옥 (고려대학교 지구환경과학과) ;
  • 남상헌 (한국해양연구원 극지연구본부) ;
  • 진영근 (한국해양연구원 극지연구부)
  • Published : 2002.06.01


The Gravity-Geologic Method (GGM) was implemented for bathymetric determinations in the Drake Passage, Antarctica, using global marine Free-air Gravity Anomalies (FAGA) data sets by Sandwell and Smith (1997) and local echo sounding measurements. Of the 6548 bathymetric sounding measurements, two thirds of these points were used as control depths, while the remaining values were used as checkpoints. A density contrast of 9.0 gm/㎤ was selected based on the checkpoints predictions with changes in the density contrast assumed between the seawater and ocean bottom topographic mass. Control depths from the echo soundings were used to determine regional gravity components that were removed from FAGA to estimate the gravity effects of the bathymetry. These gravity effects were converted to bathymetry by inversion. In particular, a selective merging technique was developed to effectively combine the echo sounding depths with the GGM bathymetiy to enhance high frequency components along the shipborne sounding tracklines. For the rugged bathymetry of the research area, the GGM bathymetry shows correlation coefficients (CC) of 0.91, 0.92, and 0.85 with local shipborne sounding by KORDI, GEODAS, and a global ETOPO5 model, respectively. The enhanced GGM by selective merging shows imploved CCs of 0.948 and 0.954 with GEODAS and Smith & Sandwell (1997)'s predictions with RMS differences of 449.8 and 441.3 meters. The global marine FAGA data sets and other bathymetric models ensure that the GGM can be used in conjunction with shipborne bathymetry from echo sounding to extend the coverage into the unmapped regions, which should generate better results than simply gridding the sparse data or relying upon lower resolution global data sets such as ETOPO5.

인공위성 레이더고도 측정값으로부터 유도된 중력이상으로턱터 남극 드레이크해협의 해저지형을 계산하기 위해 Gravity-Geologic Method(GGM)를 적용하였다. 총 6548개의 음항측심자료 중 2/3는 control depth로, 나머지는 결과 검증을 위한 check point 자료로 이용하였다. 효과적인 계산을 위해 해수와 해저지형의 밀도차이는 check point를 이용, 9.0 gm/㎤로 가정하였다. Control depth로부터 광역중력이상을 계산하였고, 이를 Sandwell & Smith(1997)의 중력이상으로부터 제거하여 해저지형의 기복에 의한 중력 효과를 계산하였으며, 이로부터 해저지형을 복원하였다. Selective Merging 기법을 개발하여 복원된 해저지형과 고주파 측심자료를 효과적으로 합성하였다. 복원된 해저지형은 한국해양연구원의 측심자료, GEODAS 및 전지구 모델 ETOPO5 결과와 각각 0.91, 0.92, 0.85의 상관계수를 갖으며, Selective Merging을 이용한 최종 결과는 GEODAS 및 Smith Sandwell(1997)의 결과와 각각 0.948 및 0.954의 상관관계 및 449.8, 441.3 m의 RMS 오차를 갖는다. GGM을 이용하여 계산된 해저지형은 측심이 충분히 이루어지지 않은 지역의 경우 전지구모델(ETOPO5)이나 자료의 양이 불충분한 음항측심에 의한 결과보다 우수한 것으로 나타났다.



  1. Geotechnical and Environmental Geophysics v.Ⅲ The gravity-geologic technique for mapping varied bedrock topography Adams, J. M.;W. J. Hinze;Ward S. H.(ed.)
  2. Use of the gravity-geologic method: Error propagation and case study Anderson, G.
  3. Marine Geology v.25 The opening of Drake Passage Barker;Burrel
  4. Ground Water v.10 no.3 Mapping buried bedrock topography with gravity Ibrahim, A.;Hinze, W. J.
  5. Am. Assoc. of Petroleum Geologists Studies in Geology v.13 Sequence stratigraphy of the Bransfield Basin, Antarctica, implication for tectonic history and hydrocarbon potential Jeffers, J.D.;Anderson, J.B.;St. John, B.(ed.)
  6. Crustal structure of the South Shetland trench and the Shackleton fracture zone off the northern Antarctic Peninsula Jin, Y. K.
  7. Report 1999-1, Research Institute of Geoinformatics & Geophysics A study on the gravity anomalies in the Drake Passage, Antarctica, using satellite radar altimetry Kim, J. W.
  8. Gravity-geologic investigation of buried bedrock topography in northwestern Ohio Nagarajan, R.
  9. An integrated geophysical investigation of Greenlands tectonic history Roman, D. R.
  10. Marine trackline geophysics data CD-ROM set. U.S. Dept. of Commerce NGDC
  11. J. Geophys. Res. v.102 no.B5 Marine gravity anomalies from Geosat and ERS-1 satellite altimetry Sandwell, D. T.;Smith, W.H.F.
  12. J. Geophys. Res. v.99 no.B11 Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry Smith, W.H.F.;Sandwell, D.T.
  13. Science v.277 Global sea floor topography from satellite altimetry and ship depth soundings Smith, W.H.F.;Sandwell, D.T.
  14. Geophysics v.55 Gridding with continuous curvature splines in tension Smith, W.H.F.;Wessel, P.
  15. Geophysics v.62 no.1 Analysis of anomaly correlations von Frese, R.R.B.;Jones, M.B.;Kim, J.W.;Kim, J. H.
  16. A study on the gravity field of the Drake Passage, Antartica, using Geosat radar altimetry Youn, S.W.
  17. Data Announcement 88-MCG-02, Digital relief of the Surface of the Earth NGDC