Separation and Purification of Polyphenols from Pine Needle

Duk-Sook Kim, Kyung-Yee Kim and Keun-Bo Lee
Department of Food Science and Technology, Seoil College, Seoul 131-702, Korea

Abstract

The antimicrobial and antioxidative effect of polyphenols (PP) was proved from pine needle. This method which was separated and purified of PP used pine needle powder as the material and assorted the solvent and then it was added the 7 times (w/v) of the material. It was extracted at 85°C for 6 hours and was passed the column to fill with formamidine-active carbon (1:1, w/v). It was concentrated and dried by spray, added n-hexane as the food adding material in this powder, was extracted for 1 hrs. The each sample was obtained after removing the fat component then dried. The effect of extraction solvent among the hot water, ethyl alcohol (EtOH), isopropyl alcohol (IPA) was determined depending on the yield and the purity. The relationship between the yield and purity showed the positively inverse proportion and the extraction solvent was selected as the utilization of separation material. As the method of separation and purification of PP was accomplished, in order to use of the new subject matter the purity enhance is expected. The application of the new subject matter as the raw material of food needs to examine actively except the functional properties of anticancerous, antimicrobial, antioxidative, antiinflammatory.

Key words : pine needle, polyphenols, n-hexane, EtOH, IPA

Corresponding author: Duk-Sook Kim, Department of Food Science and Technology, Seoil College, Seoul 131-702, Korea E-mail : dskim@seoil.ac.kr
법은 활발하게 진행된 반면 산업적으로 적절 양용할 수 있는 분리·정제에 관한 연구보수만 전개 양용할 수 있었다. 이에 본 연구에서는 산업적으로 적절 양용 가능한 분리·정제 방법을 확립하고자 하는 의도에서 본 연구를 행하였다.

재료 및 방법

재료

솔잎은 2000년 6월 초순 경기도 용인지역의 야산에서 직접 채취한 리커다 종으로 이들 종류수로 3배에 걸쳐 세척을 실시하여 이물 등을 원천히 제거한 다음 햇빛을 전혀 받지 않는 용달에서 자연건조 하여 분쇄기를 이용하여 분쇄하였 다. 분쇄물은 50 mesh 쌍을 이용하여 체결한 후 이 분말을 본 실험의 재료로 사용하였다.

Polyphenols 물질의 분리·정제

솔잎분말로부터 polyphenols의 분리·정제는 Fig. 1에 나타낸 바와 같이 행하였다. 즉, 솔잎을 건조-분쇄하여 얻은 분말을 이용하여 polyphenols의 경우는 열수, ethyl alcohol (EtOH) 및 isopropl alcohol (IPA)를 각각 1.7(w/v)의 비율로 혼합하여 환경장치를 설치하고 85°C의 온도조건에서 6시간 동안 연속으로 추출을 실시하였다. 추출은 완료된 다음 이들 여과를 이용하여 여과하고 이 여과를 formamide-활성탄소 (1:1, w/v)를 첨가한 유리관을 통해서 정제(8)에 행하였다. 추출용액은 진공감압능동기 (rotary vacuum evaporator, BUCHI, Germany)에서 50~60°C, 진공도 700 mHg의 조건에서 농축하여 제거하였다. 이 농축액을 분리주입한 후 이 추출분말에 식품점가용 n-hexane를 1.02.5(w/v)의 비율로 가하여 상은 하에 세척하여 교반하여 1시간 동안 추출하여 조지방 성분을 제거하였다. 조지방 성분이 제거된 분말을 주연하여 정제된 polyphenols를 얻었다.

Polyphenols 화합물의 함량분석

Polyphenols의 함량은 Folin-Denis법(11)을 일부 수정하여 측정하였다. 즉, 솔잎 1g에 1ml의 녹인 다음 0.2 mL를 시험관에 취하고 중류를 가하여 2 mL로 정량한 후 0.2 mL Folincicocaleu's phenol reagent을 적어가며 잘 혼합한 다음 3분간 실온에서 방치하였다. 3분 후 NaCO₃ 포화액 0.4 mL를 가하여 혼합하고 4 mL로 만든 다음 실온에서 1시간 반치하여 상징액을 725 nm에서 흡광도를 측정하였다. 이에, 중 polyphenols의 tannic acid를 이용하여 측정한 표준곡선으로부터 함량을 구하였다. Tannic acid를 이용한 표준곡선은 tannic acid 1 mg를 50% MeOH 용액 1 mL에 녹이고 최종농도가 0, 50, 100, 150, 200 및 300 μg/mL 용액이 되도록 취하여 위와 같은 방법으로 725 nm에서 흡광도를 측정하여 작성하였다.

결과 및 고찰

추출용액에 따른 polyphenols의 물리적 성질의 변화

솔잎으로부터 솔잎 polyphenols를 추출하는 과정에서 그 추출용액에 열수 EtOH 및 isopropl alcohol을 각각 사용한 결과는 Table 1에서 나타낸 바와 같다. 즉, polyphenols는 추출, 농축과정에서의 열처리로 인하여 변색이 초래되어 솔잎 고유의 색상이 약간 약화되었을 뿐 아니라 고유의 맛과 향이 약간 아미·이위를 가져온다고 나타내었다. 각각의 추출용액에 의하여 얻은 polyphenols의 외형 및 관능적 특성에서는 열수추출물이 상대적으로 그 색상이 가장 옅고, 아미·이위가 약간 등 가장 우수한 반면 최종적으로 얻어진 수율은 가장 낮은 9.84%였다. 이에 비하여 그 추출용액에 EtOH, IPA를 사용한 경우에는 열수추출물에 비하여 그 외상 약간존립하고 아미·이위발생도가 심하였으며, 상대적으로 수율은 각각 11.61, 14.36%를 나타내며 대조가였다. 사과의 경우는 성숙도에 따라 페놀물질의 함량이 70.19~97.57 mg%였으나, 성숙이 진행됨에 따라 점진적인 감소현상을 보이는 것으로 보고된 바 있다(12).

<table>
<thead>
<tr>
<th>Extraction solvent</th>
<th>Dark brown color</th>
<th>Off-flavor</th>
<th>Off-taste</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot water</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>9.84</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Isopropl alcohol</td>
<td>*****</td>
<td>*****</td>
<td>***</td>
<td>14.36</td>
</tr>
</tbody>
</table>

1) Color : Strength of dark brown color by color change.
2) Flavour : Strength of off-flavor.
3) Taste : Strength of off-taste.

이와 같이 추출용액에 따라 성상 및 수율에서 차이를 보이는 것은 추출용액의 극성도 차이와 농축과정에서의 취델 시간에 따른 약간의 변화의 차이에 기인하는 현상의 일부인 것으로 판단된다. 따라서, 수율의 측정에서는 IPA를 이용하여 polyphenols을 추출하는 것이 가장 우수한 방법인 것으로 판단할 수 있으나 이들 설탕 등에 직접 적합할 경우 그 성상 및 이미·이위는 매우 중요한 요인이 되기 때문에 솔잎으로부터 얻어진 polyphenols의 최종 용도에 따라 추출 용매를 선택할 필요성이 대두되었다. 변한 아니라 현재 식품첨가물전(13)에서 IPA의 경우는 설탕 또는 설탕첨가물의 사용이 금지되어 있는 유매일수 이는 설탕용으로는 현실
적으로 사용이 불가능한 실정이다. 결과적으로 추출과정은 실험실법의 경우 밀에 빌어 입혀서 실내공간에서 설치 하여 실시하였으나 추출을 사용할 경우 환경과 건강의 이용 여부에 대한 통시 추출이 가능하였는데, EtOH 등의 용 액 회수율이 낮아 경제성이 떨어지는 문제점도 내포하고 있 었다.

<table>
<thead>
<tr>
<th>Table. 2. Purity of polyphenols at various extraction-purification method from pine needle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction solvent</td>
</tr>
<tr>
<td>Pre-purified type</td>
</tr>
<tr>
<td>After purified type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isopropyl alcohol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine needle (PN, 100g)</td>
</tr>
<tr>
<td>Drying</td>
</tr>
<tr>
<td>Milling</td>
</tr>
<tr>
<td>PN Hot water=1:1.7(w/v)</td>
</tr>
<tr>
<td>PN EtOH(70%)=1:1.7(w/v)</td>
</tr>
<tr>
<td>PN IPA=1:1.7(w/v)</td>
</tr>
<tr>
<td>Extraction at 65℃ during 12h</td>
</tr>
<tr>
<td>Filtration</td>
</tr>
<tr>
<td>Packing of formamide-active carbon</td>
</tr>
<tr>
<td>Column chromatography</td>
</tr>
<tr>
<td>50~60℃/700mmHg</td>
</tr>
<tr>
<td>Condensation</td>
</tr>
<tr>
<td>Spray drying</td>
</tr>
<tr>
<td>Powder n-hexane=1:2.5(w/v)</td>
</tr>
<tr>
<td>Soaking time: about 1 hour</td>
</tr>
<tr>
<td>Removal of fat component</td>
</tr>
<tr>
<td>Removal of n-hexane by evaporating</td>
</tr>
<tr>
<td>Separation Filtration</td>
</tr>
<tr>
<td>Air drying</td>
</tr>
<tr>
<td>PN polyphenols(9.84g)</td>
</tr>
<tr>
<td>PN polyphenols(11.61g)</td>
</tr>
<tr>
<td>PN polyphenols(14.56g)</td>
</tr>
</tbody>
</table>

Fig. 1. Separation and purification method of polyphenols from pine needle used for hot water, ethyl alcohol and isopropyl alcohol.

분리·정제에 따른 polyphenols의 순도

한편, 유효분말로부터 polyphenols의 추출과정에서 추출용액 로 열수, EtOH, IPA를 사용하여 얻어진 polyphenols의 순도를 HPLC로 측정한 결과는 Table 2에 나타난 바와 같았다. 즉, 정제과정을 거치지 않은 polyphenols의 순도는 열수추출물 80.98%, EtOH 추출물 78.95%, IPA 추출물 78.36%로 나타나 polyphenols의 순도는 열수추출물이 우수한 것으로 나타났다. 이들 polyphenols를 formamide-활성탄소를 충전한 유리관을 동 과시켜 정제과정을 거친 후에는 각각 83.83, 82.64, 81.52%의 순도를 보여 임상 수준의 정제효과가 인정되었으며, 정제과정 이전과 동일하게 polyphenols의 순도는 열수추출물이 상대적 으로 높았다. 따라서, polyphenols의 순도 및 Fig. 1에서 나타 난 수율을 동시에 고려해 볼 때, 열수추출물은 순도는 높은 반면 수율은 낮았으며, 각 3종의 추출물에서 추출용매별 로 순도와 수율의 관계를 Fig. 2에 나타내었다.

Fig. 2. Relationship between purity and yield according to extraction solvent system.

Polyphenols의 의학적 특성

3종의 유효계를 이용하여 유효적으로 polyphenols 성분 을 추출·정제하여 최종적으로 얻어진 유효 polyphenols 분말 의 의학적 특성을 Table 3에 나타낸 바와 같았다. 즉, 수 분말로는 농단 및 분무건조의 조건에 따라 달소의 차이가 있었으나 11.36~12.74% 수준으로 추출용매의 종류와는 무관하였다. 업도는 200 mesh 체 유효율로 측정한 결과 55.7~56.2%를 나타내어 미리지 않았으며, 40~50℃ 온수에서의 유효도는 92~100% 였다. 온수에서의 유효도는 열수추출물의 경우 100%, EtOH 추출물 93~94%, IPA 추출물은 92~93% 를 나타내어 추출용매에 따라 큰 차이를 보였다. 따라서, 수 용, 순도와 함께 polyphenols 분말의 용도 즉, 수용액 중에 유효 해시 식품 또는 식품원료에 사용할 경우에는 업도 추출 물, 식품 이외의 용도로 사용할 경우에는 IPA추출물이 적합 할 것으로 판단되며, 의학적용에 따라 그 추출용매를 차별화하여야 할 필요성이 다가있다. 식용유지한 업 수추출물을 화학재료 등의 용도로 사용할 경우에는 그 낮은 유효도로 인하여 제한을 받을 수 있으나 이 경우에는 EtOH 에 용해시킨 다음 이를 적용하고 업처리를 행하는 과정을 통하여 해결이 가능하였다. 즉, EtOH에 용해 시킨 후 식용 유지 등에 혼합하면 유기용매인 EtOH는 완전히 동해되는
특성을 이용하여 전체적으로 분산시킨 다음 원자리를 행하여 EtOH를 취해시키면 polyphenols는 식용유 증 증에 전체적으로 분산되어 항산화 효과를 발휘하는 것을 확인할 수 있다.

Table 3. Phycochemical characteristics of pine needle polyphenol products

<table>
<thead>
<tr>
<th>Moisture content (%)</th>
<th>Particle size (200 mesh through, %)</th>
<th>Solubility in warmed water (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.36~12.74</td>
<td>55.7~56.2</td>
<td>92~100</td>
</tr>
</tbody>
</table>

요 약

솔잎으로부터 항균, 항산화효과 등이 입증된 바 있는 polyphenols 분리·정제를 실시하였다. 이 물질의 분리를 위한 추출용매로는 알코, EtOH, IPA를 사용하였는데, 각각의 용매에 의하여 분리된 polyphenols의 수수 및 순도는 각각 9.84, 11.61, 14.36% (w/v) 및 83.83, 82.64, 81.52%였다. 추출 조건은 술잎분말 대비 약 7배 (w/v)에 해당하는 용매를 가하고 85℃에서 6시간 동안의 처리로 추출이 가능하였다. 분리된 polyphenols의 정제는 formamide-active carbon(1:1, w/v)를 충분한 column을 통해시켜 정제한 다음 농축, 분리간조 하고, 이 분말에 식품첨가용 n-hexane(1:2.5, w/v)을 가하여 1시간 동안 추출하여 지방성분을 추출, 제거하고 중전하여 각각의 시험물을 얻었다.

Polyphenols의 추출용매로는 알코, EtOH, IPA 중 수수과 순도를 동시에 고려할 때, 상호간의 장단점이 있었는데, 수수과 순도에는 정의 반비례 관계가 성립하였다.

감사의 글

본 연구는 2000년도 서일대학 학술연구비 지원과제의 일부로 이에 깊이 감사드립니다.

참고문헌

1. 고경식 (1991) 한국식품검색도감. 아카데미출판사. 서울, p.16
2. 한승제 (1997) 술방울과 술잎의 휘발성 항가성분 분석. 전북대학교 대학원 식사학위논문
4. 문화방송 (1988) 한국민간요법대전. 금박출판사, 서울, p.121
5. 김정일, 김덕숙, 윤윤호, 구본준, 김경이, 이근보 (2000) 술잎이 달걀 유산매미박에 aflatoxin 생성 억제에 미치는 영향. 식품의학회지, 4, 87-92
6. 이민수 (1985) 술잎의 항산화물질에 관한 연구. 홍양대
8. 이기영 (1993) 달자등밀백에서 분리한 폐열화합물의 항산화효과. 한국식품과학회지, 25, 9-14
10. 김현정, 전방실, 김성규, 조재영, 조영수 (2000) 홍화 (Carthamus tinctorius L.)의, 순 및 흰검 수출물의 폐열화
12. 황해중 (1999) 식물기 사과 중의 폐열물질 변화. 한국 식품영양학회지, 12, 364-369
13. 식품첨가물품 (2000) 보건복지부

(접수 2002년 12월 11일)