The Effect of Cold-adaptation on Stress Responses and Identification of a Cold Shock Gene, capA in Bradyrhizobium japonicum

Bradyrhizobium japonicum의 저온 전처리에 의한 환경스트레스 내성 증진에 대한 연구

  • 유지철 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터) ;
  • 노재상 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터) ;
  • 오은택 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터) ;
  • 소재성 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터)
  • Published : 2002.03.01


Bradyrhizobium japonicum is a soil bacterium with a unique ability to infect the roots of leguminous plants and establish a nitrogen-fixing symbiosis, which has been used as a microbial manure. In this study, we examined the stress response after pretreatment of cells with cold temperature. When pre-treated with cold temperature ($4^{\circ}C$) for 16 hr, B. japonicum increased the viability in subsequent stress-conditions such as alcohol, $H_2O_2$, heat, and dehydration. For cold adpatation, cultured B. japonicum was exposed to $4^{\circ}C$. Upon subsequent exposure to various conditions, the number of adapted cells pretreated by cold adaptation was 10-1000 fold higher than that of non-adaptated ones. It appeared de novo protein synthesis occurred during adaptation, because a protein synthesis inhibitor, chloramphenicol abolished the increased stress tolerance. By using a degenerate PCR primer set, a csp homolog was amplified from B. japonicum genome and sequenced. The deduced partial amino acid sequence of the putative Csp (Cold shock protein) shares a significant similarity with known Csp proteins of other bacteria.


Bradyrhizobium japonicum;cold adaptation;csp;stress response


  1. Proc. Natl. Acad. USA. v.87 Major cold shock protein of Esherichia coli Goldstein, J.S. Pollitt;M. Inouye
  2. Curr. Microbiol. v.28 Temperature-dependent survival of isolates of Thiobacillus ferrooxidans Hubert, W.A.;G.D. Ferroni;L.G. Leuduc
  3. Antonie van Leeuwenhoek v.77 Adaptive response to cold temperatures and characterization of cspA in Salmonella typhimurium LT2 Horton, A. J.;K.M. Hak;R.J. Steffan;J.W. Foster;A. K. Bej
  4. J. Bacteriol. v.87 Ribosomes as sensors of heat and cold shock in Escherichia coli Willimsky, S.P.A.;F.C. Neidhardt
  5. Molecular Cloning: A Laboratory Manual(3rd ed.) Sambrook, J.;E.F. Laboratory;Fritsch;T. Maniatis
  6. J. Bacteriol. v.178 Cold shock stress-induced proteins in Bacillus subtilis Graumann, P.;K. Schroder;R. Schmid;M.A. Marahiel
  7. Lett. Appl. Microbiol. v.23 Physiological response of Enterococcus faecalis JH2-2 to cold shock: growth at low temperatures and freezing/thawing challengs` Thammavongs, B.;D. Corroler;J.M. Panoff;Y. Auffray;P. Boutibonnes
  8. FEMS Microbiol. Ecol. v.32 Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. Drouin, P.;D. Prevost;H. Antoun
  9. Appl. Environ. Microbiol. v.60 Starvation-induced stress resistance Lactococcus lactis subsp. lactis IL 1403 Hartke, A.;S. Bouche;X. Gansel;P. Boutibonnes;Y. Auffray
  10. Cryobiol. v.36 Cold stress responses in mesophilic bacteria Panoff, J.M.;B. Thammavongs;M. Gueguen;P. Boutibonnes
  11. Cryobiol. v.32 Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL1403 Panoff, J.M.;B.T. Vongs;J.M. Laplace;A. Hartke;P. Boutibonnes;W. Auffray
  12. Cryobiol. v.10 Preservation of bacteria by freezing at moderately low temperatures Wamasato, K.;D. Okuno;T. Ohtomo
  13. Cryobiol. v.37 Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis Kim, W.W.;N. Khunajkr;N.W. Dunn
  14. Curr. Microbiol. v.35 Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance Kim, W.S.;N.W. Dunn
  15. Appl. Environ. Microbiol. v.47 Preservation of Rhizobium viability and symbiotic infectivity by suspension in water Crist, D.K;R. Wyza;K.K. Mills;W.D. Bauer;W.R. Evans
  16. Mol. Plant-Microbe Interact. v.4 A lipopolysaccharide mutant of Bradyrhizobium japonicum that nucouples polysaccharides from bacterial differentiation Stacey, G;J.-S. So;L.E. Roth;S.K.B. Lakshmi;R.W. Carlson
  17. FEMS Microbiol. Lett. v.178 Cloning of two cold shock genes, cspA and cspG, from the deep-sea psychrohilic bacterium Shewanella biolacea strain DSS12 Fujii, S.;K. Nakasone;K. Horikoshi