On the Debates of Arthropod Phylogeny

절지동물 계통에 관한 논쟁

  • 황의욱 (경북대학교 사범대학 생물교육과)
  • Published : 2002.04.01

Abstract

In spite of dramatic change of environmental condition since Cambrian big-bang (explosion occurred ca.540 mya, the phylum Arthropoda retains a great diversity, and it is estimated approximately that 1-10 million arthropod species are extant on the earth. Except for an extinct arthopod subphylum Trilobita, extant arthropods could be divided into five subphyla: Hexapoda, Crustacea, Myriapoda, Chelicerata, and Pycnosonida. During the last century, systematists have disputed about interrealtionships among Arthropoda and its relatives (Onychophora, Tardigrada, and Pentastomida), arthropod phylogenetic position within protostome animals, monophyly or polyphyly of the phylum Arthropods, and interrelationships among five arthropod subgroups (subphyla) etc. Recently, new animal phylogeny was reported that protostomes could be clustered into two groups, Lophotrochozoa and Ecdysozoa, and molting animals such as Nematoda and Arthropoda were included within the Ecdysozoa. On the basis of the new animal phylogeny, first of all, I would mention phylogenetic positions and relationships of Arthropods and its relatives to introduce controversies of arthropod phylogeny in phylum level of animals. After that, I focused mainly on the controveries related to arthropod monophyly and phylogenetic relationships among four major arthropod groups except Pycnogonida. In this work, Pycnogonida which is a relatively small group and one of the five arthropod subphyla was not handled significantly although there are some controversies if it is a sister taxon of chelicerates or the most primitive arthropod group (namely, a sister of four remains arthropod groups).

References

  1. Mol. Biol. Evol. v.6 Molecular evidence for inclusion of the phylum pentastomida in the Crustacea Abele,L.G.;W.Kim;B.E.Felgenhauer
  2. Nature v.413 Sum of the arthropod parts Blaxter M. https://doi.org/10.1038/35093191
  3. Arthropoda phylogeny with special reference to insects Arthropoda phylogeny with special reference to insects Boudreaux,H.B.
  4. Nature v.364 A cambrian gilled lobopod from Greenland Budd,G. https://doi.org/10.1038/364709a0
  5. Nature v.399 Hox genes in brachiopods and priapulids and protostome evolution De Rosa,R.;J.K.Grenier;T.Andreeva;C.E.Cook;A.Adotte;M.Akam;S.B.Carrol;G.Balavoine https://doi.org/10.1038/21631
  6. Nature v.376 Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods Friedrich,M;D.Tautz https://doi.org/10.1038/376165a0
  7. Inv. Biol. v.115 Molecular analysis supports a taedigrade-arthropoda association Garey,J.R.;M.Krotec;D.R.Nelson;J.Brooks https://doi.org/10.2307/3226943
  8. J. Mol. Evol. v.49 Mitochondrial genes collectively suggest the paraphyly of Crustacea with respect to Insecta Garcia-Machado,E.;M.Pempera;N.Dennebouy;M.Oliva-Suarez;J.C.Mounolou;M.Monnerot https://doi.org/10.1007/PL00006527
  9. Frunctonal morphology and the evolution of the hexapod classes Frunctonal morphology and the evolution of the hexapod classes Manton,S.M.;A.P.Gupta(ed.)
  10. Mol. Biol. Evol. v.14 Molecular phylogeny of the major arthropod groups indicates polyphyly of crustaceans and a new hypothesis for the origin of hexapods Regier,J.;C.Jeffrey;J.W.Shultz https://doi.org/10.1093/oxfordjournals.molbev.a025833
  11. Mol. Phylogenet. Evol. v.20 Elongation factor-2: a useful gene for arthropod phylogenetics Regier,J.C.;J.W.Shultz https://doi.org/10.1006/mpev.2001.0956
  12. Cladistics v.9 Arthropod phylogeny: a combined approach Wheeler,W.C.;P.Cartwrigth;C.Y.Hayashi https://doi.org/10.1111/j.1096-0031.1993.tb00207.x
  13. data. Syst. Biol. v.44 Sequence alignment, parameter sensitivity, and the phlogenetic analysis of molecular Wheeler,W.C.
  14. Sampling, groundplans, total evidence and the systematics of arthropods Sampling, groundplans, total evidence and the systematics of arthropods Weeler,W.C.;R.A.Fortey(ed);R.H.Thomas(ed)
  15. J. Mol. Evol. v.43 Phylogenetic relationships of annelids, molluscs, and arthropods evidenced from molecules and morpholgy Kim C.B;S.Y.Moon;S.R.Gelder;W.Kim https://doi.org/10.1007/BF02338828
  16. Mol. Biol. Evol. v.13 First molecular evidence for the existence of a Tardigrada+Arthropoda clade Giribet,G.;S.Cararnza;J.Baguna;M.Riutort;C.Ribera https://doi.org/10.1093/oxfordjournals.molbev.a025573
  17. Proc. Natl. Acad. Sci. USA. v.97 The new animal phylogeny: reliability and implications Adoutte,A.;G.Blavoine;N.Lartillot;O.Lesponet;B.Prud'homme;R,de Rosa https://doi.org/10.1073/pnas.97.9.4453
  18. Evolutionary crrelates of arthropod tagmosis:Scrambled legs Evolutionary crrelates of arthropod tagmosis:Scrambled legs Wills,M.A.;D.E.G.Brigge;R.A.Fortey(ed.);R.H.Thomas(ed.)
  19. J. Zool.(Lond.) v.171 Arthropod phylogeny - a modern synthesis Manton,S.M. https://doi.org/10.1111/j.1469-7998.1973.tb07519.x
  20. Kor. J. Syst. Zool. v.17 Newanimal phylogeny Kim C.B.;W.Kim
  21. The Burgess shale The Burgess shale Whittington, H. B.
  22. Science v.256 Morphological dispartiy in the Cambrian Briggs,D.E.G.;R.A.Fortey;M.A.Wills
  23. Proc. R. Soc. Lond. B. Biol. Sci. v.267 Rhylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean+hexapod clade Shultz,J.W.;J.C.Regier https://doi.org/10.1098/rspb.2000.1104
  24. Mol. Biol. Evol. v.8 The phylogenetic status of arthropods, as in ferred from 18S rRNA sequences Turbeville,J.M.;D.M.Pfeifer;K.G.Field;R.A.Raff
  25. Brain Behav. Evol. v.52 The evolution of the Arthropoda Tiegs,O.W.;S.M.Manton https://doi.org/10.1159/000006563
  26. Biol. Rev. v.33 The evolution of the Arthropoda Tiegs,O.W.;S.M.Manton https://doi.org/10.1111/j.1469-185X.1958.tb01258.x
  27. Sinauer Associates Invertebrates Brusca,R.C;G.J.Brusca
  28. Zeitschrift fur Zoologische, Systematik and Evolutionsforschung v.24 Arthropod interrelationships - the phylogenetic-systematic approach Weygoldt,P.
  29. Mol. Cells. v.8 Molecular phylogeny of arthropods and their relatives: polyphyletic origin of arthropodization Min,G.S.;S.H.Kim;W.Kim
  30. Science v.258 Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods Ballard,J.W.O.;G.J.Olsen;D.P.Faith;W.A.Odgers;D.M.Rowell;P.W.Atkinson https://doi.org/10.1126/science.1455227
  31. Verh. Distch. Zool. Gesamte. v.88 The significance of fossils in understanding arthropod evolution Wills,M.A.;D.E.G.Briggs;R.A.Fortey;M.Wilkinson
  32. Nature v.392 Gene translocation links insects and crustaceans Boore J. L;D.V. Lavrov;W.M.Brown https://doi.org/10.1038/33577
  33. Evol. Dev. v.3 Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences Peterson,K.J;D.J.Eernisse https://doi.org/10.1046/j.1525-142x.2001.003003170.x
  34. Evol. Dev. v.2 Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process Jenner,R.A https://doi.org/10.1046/j.1525-142x.2000.00060.x
  35. Zool. Jb. Syst. v.120 Rejection of the 'Uniramia' hypothesis and implication of the Mandibulata concept Wagele,J.W.
  36. The Arthropoda: habits, functional morphology and evolution The Arthropoda: habits, functional morphology and evolution Manton,S.M.
  37. Science. Evol. v.293 The Cambrian explosion exploded? Fortey,R.
  38. Nature v.413 Arthropod phylogeny based on eight molecular loci and morphology Giribet, G.;G. D. Edgecombe;W.C. Wheeler https://doi.org/10.1038/35093097
  39. Mol. Biol. Evol. v.18 Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda Kusche, K.;T. Burmester https://doi.org/10.1093/oxfordjournals.molbev.a003943
  40. Can. J. Zool. v.70 The Uniramia do not exist: the ground plan of the Pterygota as revealed by permian Diaphanopterodea from Russia (insectaL Paleodictyopteroidea) Kukalova-Peck,J. https://doi.org/10.1139/z92-037
  41. Molecular systematics and arthropds Molecular systematics and arthropds Wheeler,W.C.;G.D.Edgecombe(ed.)
  42. Curr. Biol. v.11 Hox genes and the phylogeny of the arthropods Cook,C.E.;M.L.Smith;M.J.Telford;A.Bastianello;M.Akam https://doi.org/10.1016/S0960-9822(01)00222-6
  43. Significance of later embryonic stages and head development in arthropod phylogeny Significance of later embryonic stages and head development in arthropod phylogeny Weygoldt,P.;A.P.Gupta(ed.)
  44. Zool. J. Linn. Soc. v.116 Phylogenetic position of the Tardigrada based on the 18S ribosomal RNA sequences Moon,S.Y.;W.Kim https://doi.org/10.1111/j.1096-3642.1996.tb02333.x
  45. Science v.186 Trilobites and the origin of arthropods Cisne,J.L. https://doi.org/10.1126/science.186.4158.13
  46. Ann. Soc. Entomol. v.37 Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name 'Tetraconata' for the monophyletic unit Crustacea+Hexapoda Dohle,W.
  47. Nature v.413 Mitochondrial protein phylogeny joins myriapods with chelicerates Hwang U. W.;M. Freidrich;D. Tautz;C. J. Park;W. Kim https://doi.org/10.1038/35093090
  48. Rossils and Strata v.4 A trilobitomorph origin for the crustacea Hessler,R.R.;W.A.Newman
  49. Morphology of fossil arthropods as a guide to phylogenetic relationships Morphology of fossil arthropods as a guide to phylogenetic relationships Bergstrom,J.;A.P.Gupta(ed)
  50. The Place of tardigrades in arthropod enolution The Place of tardigrades in arthropod enolution Dewel R.A.;W.C.Dewel;R.A.Fortey(ed.);R.H.Thomas(ed.)
  51. Proc. Natl. Acad. Sci. USA. v.97 Arthropods:developmental diversity within a a(super) phylum Akam,M https://doi.org/10.1073/pnas.97.9.4438
  52. Science v.359 End of the Uniramia taxon Shear, W. A.
  53. Proc. Natl. Acad. Sci. USA. v.86 Bilaterians of the Precambrian-Cambrian transition and the annelid-arthropod relationship Valentine,J.W. https://doi.org/10.1073/pnas.86.7.2272
  54. Mol. Phylogenet. Evol. v.9 The position of arthropods in the animal kingdom: A search of a reliable outgroup for internal arthropod phylogeny Giribet,G;C.Ribera https://doi.org/10.1006/mpev.1998.0494
  55. Smithson. Misc. Collect. v.97 Evolution of the Annelida, Onychophora, and Arthropoda Snodgrass,R.E.
  56. Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets Zrzavy,J.;V.Hypsa;M.Vlaskova;R.A.Fortey(ed.);R.H.Thomas(ed.)
  57. Nature v.38 Evidence for a clade of nematodes, arthropods and other moulting animals Aguinaldo,A.M;J.M.Turbeville;L.S.Linford;M.C. Rivera, J.R.Garey;R.A.Raff;J.A.Lake https://doi.org/10.1038/038489a0
  58. Invertebrate relationships: patterns in animal evolution Invertebrate relationships: patterns in animal evolution Willmer,P.
  59. Nature, Suppl. v.402 The future of evolutionary developmenta biology Holland,P.W.H. https://doi.org/10.1038/35011536
  60. Development v.129 Exploring the myriapod body plan: expression patterns of the ten Hox genes in a contipede Hughes,C.L;T.C.Kaufman