Quantitative Trait Loci Mapping for Porcine Backfat Thickness

  • Wu, X.L. (Lab. for Molecular Biology Applied to Animal Production, Institute of Animal & Veterinary Science) ;
  • Lee, C. (Laboratory of Statistical Genetics, Institute of Environment and Life Science, Hallym University) ;
  • Jiang, J. (Lab. for Molecular Biology Applied to Animal Production, Institute of Animal & Veterinary Science) ;
  • Peng, Y.L. (Lab. for Molecular Biology Applied to Animal Production, Institute of Animal & Veterinary Science) ;
  • Yan, H.F. (Lab. for Molecular Biology Applied to Animal Production, Institute of Animal & Veterinary Science) ;
  • Yang, S.L. (Lab. for Molecular Biology Applied to Animal Production, Institute of Animal & Veterinary Science) ;
  • Xiao, B.N. (Lab. for Molecular Biology Applied to Animal Production, Institute of Animal & Veterinary Science) ;
  • Liu, X.C. (College of Animal Science and Technology, Hunan Agricultural University) ;
  • Shi, Q.S. (College of Animal Science and Technology, Hunan Agricultural University)
  • Received : 2001.09.13
  • Accepted : 2002.02.15
  • Published : 2002.07.01


A partial genome scan using porcine microsatellites was carried out to detect quantitative trait loci (QTL) for backfat thickness (BFT) in a pig reference population. This population carried QTL on chromosomes 1, 13 and 18. The QTL on chromosome 1 was located between marker loci S0113 and SW1301. The QTL corresponded to very low density lipoprotein receptor gene (VLDLR) in location and in biological effects, suggesting that VLDLR might be a candidate gene. The QTL found on chromosome 13 was found between marker loci SWR1941 and SW864, but significance for the marker-trait association was inconsistent by using data with different generations. The QTL on chromosome 18 was discovered between markers S0062 and S0117, and it was in proximity of the regions where IGFBP3 and GHRHR were located. The porcine obese gene might be also a candidate gene for the QTL on chromosome 18. In order to understand genetic architecture of BFT better, fine mapping and positional comparative candidate gene analyses are necessary.


Backfat;Genome Scan;Microsatellites;QTL;Pigs


Supported by : Hunan Life Science Research Center


  1. Archibald, A. L., C. S. Haley, J. F. Brown, S. Couperwhite, H. A. McQueen, D. Nicholson, W. Coppieters, A. Van de Weghe, A. Stratil, A. K. Wintero, M. Fredholm, N. J. Larsen, V. H. Nielsen, D. Milan, N. Woloszyn, A. Robic, M. Dalens, J. Riquet, J. Gellin, J. C. Caritez, G. Burgaud, L. Ollivier, J. P. Bidanel, M. Vaiman, C. Renard, H. Geldermann, R. Davoli, D. Ruyter, E. J. M. Verstege, M. A. M. Groenen, W. Davies, B. Hoyheim, A. Keiserud, L. Andersson, H. Ellegren, M. Johansson, L. Marklund, J. R. Miller, D. V. Anderson, E. Signer, A. J. Jeffreys, C. Moran, P. Le Tissier, Muladno, M. F. Rothschild, C. K. Tuggle, D. Vaske, J. Helm, H. C. Liu, A. Rahman, T. P. Yu, R. G. Larson and C. B. Schmitz. 1995. The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm. Genome 6:157-175.?粫Ā倀る잖⨀ȀᘀĀ?⨀硵粫Ā倀낯Η⨀ȀᘀĀ偫?⨀肬劝Ȁ倀䢯Η⨀ȀᘀĀꡫ?⨀뺫Ā倀Η⨀ȀᘀĀl?⨀죻뺫Ā倀碮Η⨀ȀᘀĀ塬?⨀꣼뺫Ā倀ႮΗ⨀ȀᘀĀ끬?⨀᣶紅倀ꢭΗ⨀đ؀Ā࡭?⨀냶܀倀᢭Η⨀ఐ܀Ā恭?⨀㢍紅倀났Η⨀ȁᘀĀ롭?⨀?紅倀䢬Η⨀ȁᘀĀၮ?⨀炓Ჭ紅倀Η⨀ȀᘀĀ桮?⨀脅돀⁚?⨀₨Η⨀ꂰʗ⨀쁴?⨀餂돐肶֗⨀塚?⨀/ࠀ삇?⨀夂덐䀀܀̀ࠀ?⨀ࠀᘀ?⨀?⨀悈?⨀ကᘀ⡹?⨀⁹?⨀⩹?⨀炆?⨀ကᘀ塹?⨀偹?⨀婹?⨀袆?⨀က
  2. Churchill, G. A. and R. W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138:963-971.
  3. Gaylinn, B. D., C. von Kap-Herr, W. L. Golden and M. O. Thorner. 1994. Assignment of the human growth hormone-releasing hormone receptor gene (GHRHR) to 7p14 by in situ hybridization. Genomics 19:193-195.
  4. Gerbens, F., G. Rettenberger, J. A. Lenstra, J. H. Veerkamp and M. F. te Pas. 1997. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm. Genome 8:328-332.
  5. Sasaki, S., A. C. Clutter and D. Pomp. 1996. Assignment of the porcine obese (leptin) gene to chromosome 18 by linkage analysis of a new PCR-based polymorphism. Mamm. Genome 7:471-472.
  6. Yu, T. P., L. Wang, C. K. Tuggle, and M. F. Rothschild. 1999. Mapping genes for fatness and growth on pig chromosome 13:a search in the region close to the pig PIT1 gene. J. Anim. Breed. Genet. 116:269-280.
  7. Cogan, J. D. and J. A. Phillips 3rd. 1998. Growth disorders caused by genetic defects in the growth hormone pathway. Adv. Pediatr. 45:337-361.
  8. Almasy, L. and J. Blangero. 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. Anim. J. Hum. Genet. 62:1198-1211.
  9. Ovilo, C., M. Perez-Enciso, C. Barragan, A. Clop, C. Rodriquez, M. A. Oliver, M. A. Toro and J. L. Noruera. 2000. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm. Genome 11:344-346.
  10. Paszek, A. A., P. J. Wilkie, G. H. Flickinger, G. A. Rohrer, L. J. Alexander, C. W. Beattie and L. B. Schook. 1999. Interval mapping of growth in divergent swine cross. Mamm. Genome 10:117-122.
  11. Pinton, P., L. Schibler, E. Cribiu, J. Gellin and M. Yerle. 2000. Localization of 113 anchor loci in pigs: improvement of the comparative map for humans, pigs, and goats. Mamm. Genome 11:306-315.
  12. Radovick, S., M. Nations, Y. Du, L. A. Berg, B. D. Weintraub and F. E. Wondisford. 1992. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 257:1115-1118.
  13. Perez-Enciso, M., A. Clop, J. L. Noguera, C. Ovilo, A. Coll, J. M. Folch, D. Babot, J. Estany, M. A. Oliver, I. Diaz and A. Sanchez. 2000. A QTL on pig chromosome 4 affects fatty acid metabolism: evidence from an Iberian by Landrace intercross. J. Anim. Sci. 78:2525-2531.
  14. de Koning, D. J., L. L. Janss, A. P. Rattink, P. A. van Oers, B. J. de Vries, M. A. Groenen, J. J. van der Poel, P. N. de Groot, E. W. Brascamp and J. A. van Arendonk. 1999. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152:1679-90.
  15. Bidanel, J. P., D. Milan, N. Iannuccelli, Y. Amigues, M. Y. Boscher, F. Bourgeois, J. C. Caritez, J. Gruand, P. Le Roy, H. Lagant, R. Quintanilla, C. Renard, J. Gellin, L. Ollivier and C. Chevalet. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol. 33:289-309.
  16. Ingraham, H. A., V. R. Albert, R. Chen, E. B. Crenshaw, H. P. Elsholtz, X. He, M. S. Kapiloff, H. J. Mangalam, L. W. Swanson, M. N. Treacy and M. G. Rosenfeld. 1990. A family of POU-domain and PIT1 tissue-specific transcription factors in pituitary and nenroendocrine development. Annu. Re. Physiol. 52:773-791.
  17. Rohrer, G. A., L. J. Alexander, Z. Hu, T. P. Smith, J. W. Keele, and C. W. Beattie. 1996. A comprehensive map of the porcine genome. Genome Res. 6:371-391.
  18. Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm, I. Hansson, J. Hakansson and K. Lundstrom. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771-1774.
  19. Gerbens, F., D. J. de Koning, F. L. Harders, T. H. Meuwissen, L. L. Janss, M. A. Groenen, J. H. Veerkamp, J. A. Van Arendonk and M. F. te Pas. 2000. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559.
  20. Green, P., K. Falls and S. Crooks. 1990. Documentation for CRIMAP, Version 2.4, Washington University School of Medicine, St. Louis, MO, USA.
  21. Wu, X. L., C. B. Jorgensen, K. Christensen, J. N. Jorgensen, and M. Fredholm. 2000. Combined estimation of QTL effects using a mixed model in an inbred pig family. Proc. 27th Intl. Conf. Anim. Genet., Minneapolis, MN, USA, p. 63.
  22. Goureau, A., M. Yerle, A. Schmitz, J. Riquet, D. Milan, P. Pinton, G. Frelat and J. Gellin. 1996. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36:252-262.
  23. Taylor, B. A. and S. J. Phillips. 1997. Obesity QTLs on mouse chromosomes 2 and 17. Genomics 43:249-257.
  24. Wu, X. L., C. Lee, J. Jiang, Y. L. Peng, S. L. Yang, B. N. Xiao, X. C. Liu and Q. S. Shi. 2001. Mapping of a quantitative trait locus on porcine chromosome 18 that significantly affected backfat and growth. Asian-Aust. J. Anim. Sci. 14:1665-1669.
  25. Nezer, C., L. Moreau, B. Brouwers, W. Coppieters, J. Detilleux, R. Hanset, L. Karim, A. Kvasz, P. Leroy, and M. Georges. 1999. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat. Genet. 21:155-156.
  26. Sambrook, J., E. F. Fritish, and T. Maniatis. 1989. Molecular Cloning. Harbor Laboratory Press. Cold Spring Harbor. NY.
  27. Sun, H. S., C. Taylor, A. Robic, L. Wang, M. F. Rothschild, and C. K. Tuggle. 1997. Mapping of growth hormone releasing hormone receptor to swine chromosome 18. Anim. Genet. 28:351-353.
  28. Warris, P. D., S. N. Brown, J. G. Franklin, and S. C. Kestin. 1990. The thickness and quality of backfat in various pig breeds and their relationship to intramuscular fat and the setting of the joints from the carcasses. Meat Sci. 28:21-29.
  29. Jeon, J. T., O. Carlborg, A. Tornsten, E. Giuffra, V. Amarger, P. Chardon, L. Andersson-Eklund, K. Andersson, I. Hansson, K. Lundstrom, and L. Andersson. 1999. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat. Genet. 21:157-158.
  30. Rohrer, G. A. and J. W. Keele. 1998. Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. J. Anim. Sci. 76:2247-2254.
  31. Lahbib-Mansais, Y., M. Yerle, P. Pinton and J. Gellin. 1996. Chromosomal localization of homeobox genes and associated markers on porcine chromosomes 3, 5, 12, 15, 16 and 18:comparative mapping study with human and mouse. Mamm. Genome 7:174-179.

Cited by

  1. Genetic Variation and Association of Insulin-Like Growth Factor Binding Protein-3 with Performance in Swine vol.47, pp.3-4, 2009,
  2. Association of eight EST-derived SNPs with carcass and meat quality traits in pigs vol.56, pp.1, 2015,