DOI QR코드

DOI QR Code

Theoretical Studies for Strong Hydrogen Bonds in Trimethyl Phosphate-(HNO3)n Complexes, n=1-3

  • Kim, Yong-Ho ;
  • Kim, Hak-Won ;
  • Park, Kwang-Heon
  • Published : 2002.12.20

Abstract

We have calculated energies and structures for the hydrogen bonded clusters between trimethyl phosphate and nitric acids. The hydrogen bond lengths between phosphoryl oxygen and the proton of nitric acid are short compared to normal hydrogen bonds, and the H-bond strengths are fairly strong. The hydrogen bond length becomes longer, and the strength becomes weaker, as more nitric acids are bound to the TMP. The average H-bond strengths for the $TMP-(HNO_3)_n$ complexes with n = 1, 2, and 3, are 9.6, 7.9 and 6.4kcal/mol at 300K respectively. Weak hydrogen bonds between nitrate oxygen and methyl proton might contribute to the stability of the clusters. Not only the BSSE but also the fragment relaxation energies should be considered to calculate hydrogen bond strengths for the complexes accurately.

Keywords

Strong hydrogen bond;Tmp-$HNO_3$

References

  1. Schuster, P.; Zundel, G.; Sandorfy, C. The Hydrogen Bond: Recent Developments in Theory and Experiments; North-Holland: Amsterdam, 1976.
  2. Hadzi, D. Pure Appl. Chem. 1965, 11, 435. https://doi.org/10.1351/pac196511030435
  3. Kreevoy, M. M.; Liang, T. M. J. Am. Chem. Soc. 1980, 102, 3315. https://doi.org/10.1021/ja00530a002
  4. Horwitz, E. P.; Kalina, D. G.; Diamond, H.; Vandegrift, G. F.; Schultz, W. W. Solvent Extr. Ion. Exch. 1985, 3, 75. https://doi.org/10.1080/07366298508918504
  5. Baaden, M.; Berny, F.; Wipff, G. J. Mol. Liq. 2001, 90, 1. https://doi.org/10.1016/S0167-7322(00)00174-4
  6. Baaden, M.; Burgard, M.; Wipff, G. J. Phys. Chem. B 2001, 105, 11131. https://doi.org/10.1021/jp011890n
  7. Frisch, M. J. et al., Gaussian 98 (Revision A.9); Gaussian, Inc.: Pittsburgh PA, 1998.
  8. Scheiner, S. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH: New York, 1991; Vol. 2, p 165. https://doi.org/10.1002/9780470125793.ch5
  9. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  10. van Duijneveldt-van de Rijdt, J. G. C. M.; van Duijneveldt, F. B. In Theoretical Treatments of Hydrogen Bonding; Hadzi, D., Ed.; John Wiley & Sons: Chichester, 1997.
  11. Gordon, A. J.; Ford, R. A. The Chemist's Companion; John Wiley & Sons, Inc.: New York, 1972.
  12. Enokida, Y.; El-Fatah, S. A.; Wai, C. M. Ind. Eng. Chem. Res. 2002, 41, 2282. https://doi.org/10.1021/ie010761q
  13. Oh, K. S.; Cha, S.-S.; Kim, D.-H.; Cho, H.-S.; Ha, N.-C.; Choi, G.; Lee, J. Y.; Tarakeshwar, P.; Son, H. S.; Choi, K. Y.; Oh, B.-H.; Kim, K. S. Biochem. 2000, 39, 13891. https://doi.org/10.1021/bi001629h
  14. Kim, K. S.; Kim, D.; Lee, J. Y.; Tarakeshwar, P.; Oh, K. S. Biochem. 2002, 41, 5300. https://doi.org/10.1021/bi0255118
  15. Lee, S.-C. Master's Thesis; University of Idaho: Moscow, Idaho, USA, 2002.
  16. Wai, C. M.; Waller, B. Ind. Eng. Chem. Res. 2000, 39, 4837. https://doi.org/10.1021/ie0002879
  17. Perrin, C. L.; Nielson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511. https://doi.org/10.1146/annurev.physchem.48.1.511
  18. Frey, P. A.; White, S. A.; Tobin, J. B. Science 1994, 264, 1927. https://doi.org/10.1126/science.7661899
  19. Sankaran, K.; Vidya, V.; Viswanathan, K. S.; George, L.; Singh, S. J. Phys. Chem. 1998, 102, 2944. https://doi.org/10.1021/jp9733330
  20. Gerlt, J. A.; Gassman, P. G. J. Am. Chem. Soc. 1993, 115, 11552. https://doi.org/10.1021/ja00077a062
  21. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond; Oxford University Press: New York, 1999.
  22. Vinogradov, S. N.; Linnell, R. H. Hydrogen Bonding; Van Nostrand Reinhold: New York, 1971.
  23. Cleland, W. W.; Kreevoy, M. M. Science 1994, 264, 1887. https://doi.org/10.1126/science.8009219
  24. Cecille, L.; Casarci, M.; Pietrelli, In New Seperation Chemistry Techniques for Radioactive Waste and Other Specific Applications; Commission of the European Communities, Ed.; Elsevier Applied Science: London, New York, 1991.
  25. Samsonov, M. D.; Wai, C. M.; Lee, S.-C.; Kulyako, Y.; Smart, N. G. Chem. Commun. 2001, 1868.
  26. Heni, M.; Illenberger, E. J. Chem. Phys. 1985, 83, 6056. https://doi.org/10.1063/1.449594
  27. Nash, K. L. Solvent Extr. Ion Exch. 1993, 11, 729. https://doi.org/10.1080/07366299308918184
  28. Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; Freeman: San Francisco, 1960.
  29. Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods; Gaussian, Inc.: Pittsburgh, 1996.
  30. Hong, B. H.; Lee, C.-W.; Lee, J. Y.; Kim, J. C.; Kim, K. S. J. Am. Chem. Soc. 2001, 123, 10748. https://doi.org/10.1021/ja016526g
  31. George, L.; Viswanathan, K. S.; Singh, S. J. Phys. Chem. 1997, 101, 2459.
  32. Kim, K. S.; Oh, K. S.; Lee, J. Y. Proc. Natl. Acad. Sci. USA 2000, 97, 6373. https://doi.org/10.1073/pnas.97.12.6373