DOI QR코드

DOI QR Code

Determination of Volatile Organic Compounds (VOCs) Using Tedlar Bag/Solid-phase Microextraction/Gas Chromatography/Mass Spectrometry (SPME/GC/MS) in Ambient and Workplace Air

  • Published : 2002.03.20

Abstract

SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba /SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv to 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air.

Keywords

VOCs;Tedlar bag;GC/MS;Solid-phase microextraction (SPME);Detection limit

References

  1. Troost, J. R. Anal. Chem. 1999, 71, 1474. https://doi.org/10.1021/ac981316g
  2. Gholson, A. R.; Jayanty, R. K. M.; Storm, J. F. Anal. Chem. 1990,62, 1899. https://doi.org/10.1021/ac00216a032
  3. Williams, R. L.; Lipari, F.; Potter, R. A. J. Air Waste Manage.Assoc. 1990, 40, 747. https://doi.org/10.1080/10473289.1990.10466720
  4. Pau, J. C.; Knoll, J. E.; Midgett, M. R. J. Air Waste Manage.Assoc. 1991, 41, 1095. https://doi.org/10.1080/10473289.1991.10466905
  5. Matisova, E.; Skrabakova, S. J. Chromatogr. A 1995, 707, 145. https://doi.org/10.1016/0021-9673(95)00347-P
  6. Zhang, Z.; Pawliszyn, J. J. High. Resolut. Chromatogr. 1993, 16,689. https://doi.org/10.1002/jhrc.1240161203
  7. Lord, H.; Pawliszyn, J. J. Chromatogr. A 2000, 885, 153. https://doi.org/10.1016/S0021-9673(00)00535-5
  8. Volmer, D. A.; Hui, J. P. M. Arch. Environ. Contam. Toxicol.1998, 35, 1. https://doi.org/10.1007/s002449900340
  9. Sng, M. T.; Lee, F. K.; Lakso, H. A. J. Chromatogr. A 1997, 759,225. https://doi.org/10.1016/S0021-9673(96)00727-3
  10. Pan, L.; Adams, M.; Pawliszyn, J. Anal. Chem. 1995, 67, 4396. https://doi.org/10.1021/ac00119a031
  11. Gorecki, T.; Pawliszyn, J. Anal. Chem. 1996, 68, 3008. https://doi.org/10.1021/ac9601270
  12. Yassaa, N.; Meklati, B. Y.; Cecinato, A. J. Chromatogr. A 1999,846, 287. https://doi.org/10.1016/S0021-9673(99)00327-1
  13. Dermietzel, J.; Strenge, G. F. J. Anal. Chem. 1999, 364, 645. https://doi.org/10.1007/s002160051404
  14. Bartelt, R. J.; Zilkowski, B. W. Anal. Chem. 1999, 71, 92. https://doi.org/10.1021/ac980785f
  15. Eriksson, M.; Swartling, A.; Dalhammar, G. Appl. Microbiol.Biotechnol. 1998, 50, 129. https://doi.org/10.1007/s002530051267
  16. Elmore, J. S.; Mottram, D. S.; Hierro, E. J. Chromatogr. A 2000,905, 233. https://doi.org/10.1016/S0021-9673(00)00990-0
  17. Poerschmann, J.; Kopinke, F. D.; Pawliszyn, J. Environ. Sci.Technol. 1997, 31, 3629. https://doi.org/10.1021/es970377d
  18. Bartak, P.; Cap, L. J. Chromatogr. A 1997, 767, 171. https://doi.org/10.1016/S0021-9673(96)01090-4
  19. Mukund, R.; Kelly, T. J.; Gordon, S. M.; Hays, M. J.; McClenny,W. A. Environ. Sci. Technol. 1995, 29, 183A. https://doi.org/10.1021/es00004a002
  20. MacKensie, A. R.; Harrison, R. M.; Colbeck, I.; Hewitt, C. N.Atmos. Environ. 1991, 25A, 351.
  21. Chai, M.; Pawliszyn, J. Environ. Sci. Technol. 1995, 29, 693. https://doi.org/10.1021/es00003a017
  22. Wu, J.; Mester, Z.; Pawliszyn, J. Anal. Chim. Acta 2000, 424, 211. https://doi.org/10.1016/S0003-2670(00)01153-3
  23. Dugay, J.; Miege, C.; Hennion, M. C. J. Chromatogr. A 1998, 795,27. https://doi.org/10.1016/S0021-9673(97)01036-4
  24. Kuo, H. W.; Wei, H. C.; Liu, C. S.; Lo, Y. Y.; Wang, W. C.; Lai, J.S.; Chan, C. C. Atmos. Environ. 2000, 34, 3331. https://doi.org/10.1016/S1352-2310(99)00396-9
  25. Dettmer, K.; Knobloch, T.; Engewald, W. F. J. Anal. Chem. 2000,366, 70. https://doi.org/10.1007/s002160050014
  26. Gorecki, T.; Pawliszyn, J. Anal. Chem. 1995, 67, 3265. https://doi.org/10.1021/ac00114a025
  27. Moder, M.; Popp, P.; Eisert, R.; Pawlizyn, J. F. J. Anal. Chem.1999, 363, 680. https://doi.org/10.1007/s002160051271
  28. U.S. EPA, Method 18, Code of Federal Regulations; 1987, Part60; Title 40
  29. Jinno, K.; Muramatsu, T.; Saito, Y.; Kiso, Y.; Magdic, S.Pawliszyn, J. J. Chromatogr. A 1996, 754, 137. https://doi.org/10.1016/S0021-9673(96)00212-9
  30. Buchholz, K. D.; Pawliszyn, J. Environ. Sci. Technol. 1993, 27,2844. https://doi.org/10.1021/es00049a026
  31. Hwang, B.; Lee, M. J. Chromatogr. A 2000, 898, 245. https://doi.org/10.1016/S0021-9673(00)00874-8
  32. Gorlo, D.; Wolska, L.; Zygmunt, B.; Namiesnik, J. Talanta 1997,44, 1543. https://doi.org/10.1016/S0039-9140(96)02176-5
  33. Cao, X. L.; Hewitt, C. N. J. Chromatogr. A 1994, 688, 368. https://doi.org/10.1016/0021-9673(94)00908-2
  34. Wang, Y.; Raihala, T. S.; Jackman, A. P.; John, R. St. Environ. Sci.Technol. 1996, 30, 3115. https://doi.org/10.1021/es950582y
  35. Kataoka, H.; Lord, H. L.; Pawliszyn, J. J. Chromatogr. B 1999,731, 353. https://doi.org/10.1016/S0378-4347(99)00237-6
  36. Haberhauer-Troyer, C.; Rosenberg, E.; Grasserbauer, M. J.Chromatogr. A 1999, 848, 305. https://doi.org/10.1016/S0021-9673(99)00459-8
  37. Page, B. D.; Lacroix, G. J. Chromatogr. A 2000, 873, 79. https://doi.org/10.1016/S0021-9673(99)01201-7
  38. Kim, Y. M.; Harrad, S.; Harrison, R. M. Environ. Sci. Technol. 1999,33, 4342. https://doi.org/10.1021/es9902367
  39. Appendix A. Alpendurada, M. J. Chromatogr. A2000, 889, 3. https://doi.org/10.1016/S0021-9673(00)00453-2
  40. Valor, I.; Molto, J. C.; Apraiz, D.; Font. G. J. Chromatogr. A 1997,767, 195. https://doi.org/10.1016/S0021-9673(97)00027-7
  41. Boyd-Boland, A. A.; Pawliszyn, J. J. Chromatogr. A 1995, 704,163. https://doi.org/10.1016/0021-9673(95)00151-C
  42. Barnabas, I. J.; Dean, J. R.; Fowlis, J. R.; Owen, S. P. J.Chromatogr. A 1995, 705, 305. https://doi.org/10.1016/0021-9673(95)00279-V
  43. Magdic, S.; Boyd-Boland, A. A.; Jinno, K.; Pawliszyn, J. J.Chromatogr. A 1996, 736, 219. https://doi.org/10.1016/0021-9673(95)01349-0
  44. Zhang, Z.; Yang, M. J.; Pawliszyn, J. Anal. Chem. 1994, 66, 844. https://doi.org/10.1021/ac00089a001
  45. Elke, K.; Jermann, E.; Begerow, J.; Dunemann, L. J. Chromatogr.A 1998, 826, 191. https://doi.org/10.1016/S0021-9673(98)00736-5
  46. Gorlo, D.; Zygmunt, B.; Dudek, M.; Jaszek, A.; Pilarczyk, M.;Namiesnik, J. F. J. Anal. Chem. 1999, 363, 696. https://doi.org/10.1007/s002160051273
  47. Potter, D. W.; Pawliszyn, J. Environ. Sci. Technol. 1994, 28, 298. https://doi.org/10.1021/es00051a017
  48. Holcomb, L. C.; Seabrook, B. S. Indoor Environ. 1995, 4, 7. https://doi.org/10.1177/1420326X9500400103
  49. Llompart, M.; Li, K.; Fingas, M. Anal. Chem. 1998, 70, 2510. https://doi.org/10.1021/ac971332y
  50. Ho, W. H.; Hsieh, S. J. Anal. Chim. Acta 2001, 428, 111. https://doi.org/10.1016/S0003-2670(00)01219-8
  51. Elke, K.; Jermann, E.; Begerow, J.; Dunemann, L. J. Chromatogr.A 1998, 826, 191. https://doi.org/10.1016/S0021-9673(98)00736-5
  52. Mills, G. A.; Walker, V.; Mughal, H. J. Chromatogr. B 1999, 723,281. https://doi.org/10.1016/S0378-4347(98)00542-8
  53. Choudhury, T. K.; Gerhardt, K. O.; Mawhinney, T. P. Environ. Sci.Technol. 1996, 30, 3259. https://doi.org/10.1021/es960040w
  54. Eisert, R.; Levsen, K.; Wuensch, G. J. Chromatogr. A 1994, 683,175. https://doi.org/10.1016/S0021-9673(94)89114-1
  55. Buchholz, K. D.; Pawliszyn, J. Anal. Chem. 1994, 66, 160. https://doi.org/10.1021/ac00073a027
  56. Arthur, C. L.; Pawliszyn, J. Anal. Chem. 1990, 62, 2145. https://doi.org/10.1021/ac00218a019
  57. Kelly, T. J.; Holdren, M. W. Atmos. Environ. 1995, 29, 2595. https://doi.org/10.1016/1352-2310(95)00192-2
  58. Oliver, K. D.; Pleil, J. D.; McClenny, W. A. Atmos. Environ. 1986,20, 1403. https://doi.org/10.1016/0004-6981(86)90011-9
  59. Chai, M.; Arthur, C. L.; Pawliszyn, J. Analyst 1993, 118, 1501. https://doi.org/10.1039/an9931801501
  60. Stashenko, E. E.; Puertas, M. A.; Salgar, W.; Delgado, W.;Martinez, J. R. J. Chromatogr. A 2000, 886, 175. https://doi.org/10.1016/S0021-9673(00)00479-9
  61. Pawliszyn, J. Solid Phase Microextraction; Wiley-VCH: New York,1997.
  62. Dewulf, J.; Langenhove, H. V. Atmos. Environ. 1997, 31, 3291. https://doi.org/10.1016/S1352-2310(97)00148-9
  63. Wang, J. L.; Chen, S. W.; Chew, C. J. Chromatogr. A 1999, 863,183. https://doi.org/10.1016/S0021-9673(99)00965-6
  64. Llompart, M.; Li, K.; Fingas, M. J. Chromatogr. A 1998, 824, 53. https://doi.org/10.1016/S0021-9673(98)00613-X
  65. Young, R.; Lopez-Avila, V. J. High Resolut. Chromatogr. 1996,19, 247. https://doi.org/10.1002/jhrc.1240190503

Cited by

  1. Current Awareness vol.37, pp.8, 2002, https://doi.org/10.1002/jms.255
  2. Computational Methods for Metabolomic Data Analysis of Ion Mobility Spectrometry Data—Reviewing the State of the Art vol.2, pp.4, 2012, https://doi.org/10.3390/metabo2040733
  3. Simultaneous Determination of Chlorinated Ethenes and Ethene in Groundwater Using Headspace Solid-Phase Microextraction with Gas Chromatography vol.52, pp.2, 2013, https://doi.org/10.1093/chromsci/bms258
  4. Analysis of Benzene Exposure Levels on Commuters Traveling within the Metropolitan Area of Costa Rica vol.04, pp.01, 2015, https://doi.org/10.4236/ojap.2015.41005
  5. Comparison of Three Methods for Extraction of Volatile Lipid Oxidation Products from Food Matrices for GC–MS Analysis vol.93, pp.7, 2016, https://doi.org/10.1007/s11746-016-2837-2
  6. Detection of gas traces using semiconductor sensors, ion mobility spectrometry, and mass spectrometry vol.23, pp.4, 2017, https://doi.org/10.1177/1469066717720795
  7. Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction vol.387, pp.6, 2007, https://doi.org/10.1007/s00216-006-1066-1
  8. Solid-phase microextraction coupled to gas chromatography with flame ionization detection for monitoring of organic solvents in working areas vol.165, pp.3-4, 2009, https://doi.org/10.1007/s00604-008-0128-9
  9. Solid-Phase Microextraction (SPME) Techniques for Quality Characterization of Food Products: A Review vol.4, pp.1, 2011, https://doi.org/10.1007/s11947-009-0299-3
  10. Time series of indoor analytes and influence of exogeneous factors on interpretation of breath analysis using ion mobility spectrometry (MCC/IMS) pp.1865-4584, 2019, https://doi.org/10.1007/s12127-019-00243-1