DOI QR코드

DOI QR Code

Oxidation of Tricarbonylmolybdacarborane.3.1 A New Entry to the First Examples of Sulfido-Bridged Dinuclear molybda(V)carboranes

  • Hwang, Jeong-Wook ;
  • Kim, Jae-Hak ;
  • Kim, Jin-Kwon ;
  • Uhm, Jae-Kook ;
  • Do, Young-Kyu
  • Published : 2002.09.20

Abstract

$[(C_2B_9H_{11})Mo(CO)_3]_2PPN_2$ $(2{\cdot}PPN_2)$, a new precursor for the oxidative decarbonylation reaction, was synthesized in high yield by the one-electron oxidation reaction of $[(C_2B_9H_{11})Mo(CO)_3]PPN_2$. $2{\cdot}PPN_2$ was structurally characterized, showing a dimeric nature with long (3.321 ${\AA}$) Mo-Mo bonding. Reaction of $2{\cdot}PPN_2$ with sulfur gave the completely decarbonylated product $[(C_2B_9H_{11})Mo({\mu}-S)(S)]_2PPN_2$ ($3{\cdot}PPN_2$). The ligand substitution of the terminal sulfur ligands in $3{\cdot}PPN_2$ to oxygen ligands was carried out with the use of PhIO to give $[(C_2B_9H_{11})Mo({\mu}-S)(O)]_2PPN_2$ ($4{\cdot}PPN_2$). The structures of $3{\cdot}PPN_2$ and $4{\cdot}PPN_2$ were also studied.

Keywords

Molybdenum,Sulfur,Carborane,Oxidative decarbonylation

References

  1. Badr, I. H. A.; Diaz, M.; Hawthorne, M. F.; Bachas, L. G. Anal. Chem. 1999, 71, 1371. https://doi.org/10.1021/ac980896e
  2. Byun, D.; Hwang, S. D.; Dowben, P. A.; Perkin, F. K.; Filips, F.; Ianno, N. J. Appl. Phys. Lett. 1994, 64, 1968. https://doi.org/10.1063/1.111758
  3. Hawthorne, M. F. Angew. Chem., Int. Ed. 1993, 32, 950. https://doi.org/10.1002/anie.199309501
  4. Mazal, C.; Paraskos, A. J.; Michl, J. J. Org. Chem. 1998, 63, 2116. https://doi.org/10.1021/jo971419j
  5. Kim, D.-H.; Won, J. H.; Kim, S.-J.; Ko, J.; Kim, S. H.; Cho, S.; Kang, S. O. Organometallics 2001, 20, 4298. https://doi.org/10.1021/om010297p
  6. Kim, J.-H.; Lamrani, M.; Hwang, J.-W.; Do, Y. Chem. Commun. 1997, 1761.
  7. Tremel, W.; Hoffman, R.; Jemmis, E. D. Inorg. Chem. 1989, 28, 1213. https://doi.org/10.1021/ic00306a005
  8. Sheldrick, G. M. SHELXS-86 User Guides; Crystallographic Department, University of Gottinggen: Germany, 1985.
  9. Park, J. S.; Kim, D. H.; Ko, J,; Kim, S. H.; Cho, S.; Lee, C. H.; Kang, S. O. Organometallics 2001, 20, 4632. https://doi.org/10.1021/om010397v
  10. Schunn, R. A.; Fritchie Jr., C. J.; Prewitt, C. T. Inorg. Chem. 1966, 5, 892. https://doi.org/10.1021/ic50039a038
  11. Cotton, F. A.; Wing, R. M. Inorg. Chem. 1965, 4, 314. https://doi.org/10.1021/ic50025a012
  12. Hille, R. Chem. Rev. 1996, 96, 2757. https://doi.org/10.1021/cr950061t
  13. Plesek, J. Chem. Rev. 1992, 92, 269. https://doi.org/10.1021/cr00010a005
  14. Kim, J.-H.; Hong, E.; Kim, J.; Do, Y. Inorg. Chem. 1996, 35, 5112. https://doi.org/10.1021/ic960223j
  15. Grimes, R. N. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds; Pergamon: Oxford, U. K., 1995; Vol. 1, p 371.
  16. Base, K.; Tierney, M. T.; Fort, A.; Muller, J.; Grinstaff, M. W. Inorg. Chem. 1999, 38, 287.
  17. Grimes, R. N. Coord. Chem. Rev. 2000, 200-202, 773. https://doi.org/10.1016/S0010-8545(00)00262-9
  18. Hatanaka, H.; Sweet, W. H.; Sano, K.; Ellis, F. Pure Appl. Chem. 1991, 63, 373. https://doi.org/10.1351/pac199163030373
  19. Crowther, D. J.; Swenson, D. C.; Jordan, R. F. J. Am. Chem. Soc. 1995, 117, 10403. https://doi.org/10.1021/ja00146a034
  20. Muller, A.; Diemann, E. Adv. Inorg. Chem. Radiochem. 1987, 31, 89. https://doi.org/10.1016/S0898-8838(08)60222-6
  21. Katsoulis, D. E. Chem. Rev. 1998, 98, 359. https://doi.org/10.1021/cr960398a
  22. Cotton, F. A.; Dori, Z.; Llusar, R.; Schwotzer, W. Inorg. Chem. 1986, 25, 3654. https://doi.org/10.1021/ic00240a025
  23. Kim, Y. -W. Ms. Thesis; KAIST: Korea, 1989.
  24. Kim, J.-H.; Lamrani, M.; Hwang, J.-W.; Do, Y. Inorg. Chim. Acta 1998, 283, 145. https://doi.org/10.1016/S0020-1693(98)00094-2
  25. Saxena, A. K.; Maguire, J. A.; Hosmane, N. S. Chem. Rev. 1997, 97, 2421. https://doi.org/10.1021/cr9703257
  26. Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. Rev. 1996, 96, 2239. https://doi.org/10.1021/cr9500390
  27. Lawrence, J. D.; Li, H. X.; Rauchfuss, T. B. Chem. Commun. 2001, 1482.
  28. Tanner, L. D.; Haltiwanger, R. C.; Rakowski DuBois, M. Inorg. Chem. 1988, 27, 1741. https://doi.org/10.1021/ic00283a016
  29. Stevenson, D. L.; Dahl, L. F. J. Am. Chem. Soc. 1967, 89, 3721. https://doi.org/10.1021/ja00991a008
  30. Kolis, J. W. Coord. Chem. Rev. 1990, 105, 195. https://doi.org/10.1016/0010-8545(90)80023-M
  31. Saltzman, H.; Sharefkin, J. G.; Newman, M. S.; Gill, N. Organic Syntheses; Wiley: New York, 1973; Collect. Vol. V, p 658.
  32. Lee, S.; Mazurowski, J.; Ramseyer, G.; Dowben, P. A. J. Appl. Phys. 1992, 72, 4925. https://doi.org/10.1063/1.352060
  33. Fendrich, W.; Harvey, J. E.; Kaszynski, P. Inorg. Chem. 1999, 38, 408. https://doi.org/10.1021/ic980737d
  34. Colquhoun, H. M.; Herbertson, P. L.; Wade, K.; Baxter, I.; Williams, D. J. Macromolecules 1998, 31, 1694. https://doi.org/10.1021/ma971186y
  35. Hwang, J.-W.; Kim, J.-H.; Lee, H.; Lee, H.; Kim, S.; Kwak, J.; Do, Y. J. Am. Chem. Soc. 2001, 123, 9054. https://doi.org/10.1021/ja0106265
  36. Keane, P. M.; Lu, Y. J.; Ibers, J. A. Acc. Chem. Res. 1991, 24, 223. https://doi.org/10.1021/ar00008a001
  37. Kawaguchi, H.; Yamada, K.; Lang, J.-P.; Tatsumi, K. J. Am. Chem. Soc. 1997, 119, 10346. https://doi.org/10.1021/ja971725e
  38. Adams, R. D.; Collins, D. M.; Cotton, F. A. Inorg. Chem. 1974, 13, 1086. https://doi.org/10.1021/ic50135a015
  39. Werner, H.; Deckelmann, K.; Schonenberger, U. Helv. Chim. Acta 1970, 53, 2002. https://doi.org/10.1002/hlca.19700530809
  40. Rakowski DuBois, M.; DuBios, D. L.; Van Derveer, M. C.; Haltiwanger, R. C. Inorg. Chem. 1981, 20, 3064. https://doi.org/10.1021/ic50223a061
  41. Sheldrick, G. M. SHELXL-93 User Guides; Crystallographic Department, University of Gottinggen: Germany, 1993.
  42. Tate, D. P.; Knipple, W. R.; Augl, J. M. Inorg. Chem. 1962, 1, 433. https://doi.org/10.1021/ic50002a052
  43. Douglass, A. G.; Czuprynski, K.; Mierzwa, M.; Kaszynski, P. Chem. Mater. 1998, 10, 2399. https://doi.org/10.1021/cm980089w
  44. Lee, S.; Dowben, P. A. Appl. Phys. 1994, A58, 223. https://doi.org/10.1007/BF00324380
  45. Stiefel, E. I.; Matsumoto, K. Transition Metal Sulfur Chemistry, Biological and Industrial Significance, ACS Symposium Series 653, American Chemical Society, Washington, DC, 1996.
  46. Hawthorne, M. F.; Zheng, Z. Acc. Chem. Res. 1997, 30, 267. https://doi.org/10.1021/ar9501479
  47. Hawthorne, M. F.; Varadarajan, A.; Knobler, C. B.; Chakrabarti, S.; Paxton, R. J.; Beatty, B. G.; Curtis, F. L. J. Am. Chem. Soc. 1990, 112, 5365. https://doi.org/10.1021/ja00169a062
  48. Lorber, C.; Donahue, J. P.; Goddard, C. A.; Nordlander, E.; Holm, R. H. J. Am. Chem. Soc. 1998, 120, 8102. https://doi.org/10.1021/ja981015o
  49. Uhrhammer, R.; Crowther, D. J.; Olson, J. D.; Swenson, D. C.; Jordan, R. F. Organometallics 1992, 11, 3908.
  50. Hong, E.; Jang, H.; Kim, Y.; Jeoung, S. C.; Do, Y. Adv. Mater. 2001, 13, 1094. https://doi.org/10.1002/1521-4095(200107)13:14<1094::AID-ADMA1094>3.0.CO;2-U
  51. Danzer, W.; Fehlhammer, W. P.; Liu, A. T.; Thiel, G.; Beck, W. Chem. Ber. 1982, 115, 1682. https://doi.org/10.1002/cber.19821150503
  52. Perrin, D. D.; Armarego, W. L. F.; Ferrin, D. R. Purification of Laboratory Chemicals, 2nd Ed.; Pergamon: New York, 1980.
  53. Hong, E.; Kim, Y.; Do, Y. Organometallics 1998, 17, 2933. https://doi.org/10.1021/om9801150
  54. Rakowski Dubios, M. Chem. Rev. 1989, 89, 1. https://doi.org/10.1021/cr00091a001
  55. Bowen, D. E.; Jordan, R. F. Organometallics 1995, 14, 3630. https://doi.org/10.1021/om00008a009
  56. Hwang, S. D.; Byun, D.; Ianno, N. J.; Dowben, P. A.; Kim, H. R. Appl. Phys. Lett. 1996, 68, 1495. https://doi.org/10.1063/1.116266
  57. Saxena, A. K.; Hosmane, N. S. Chem. Rev. 1993, 93, 1081. https://doi.org/10.1021/cr00019a011
  58. Perkins, R. K.; Rosenberg, R. A. ; Lee, S. ; Dowben, P. A. J. Appl. Phys. 1991, 69, 4103. https://doi.org/10.1063/1.348422
  59. Lee, M. H.; Hwang, J.-W.; Kim, Y.; Han Y.; Do, Y. Organometallics 2000, 19, 5514. https://doi.org/10.1021/om000730f
  60. Gloaguen, F.; Lawrence, J. D.; Schmidt, M.; Wilson, S. R.; Rauchfuss, T. B. J. Am. Chem. Soc. 2001, 123, 12518. https://doi.org/10.1021/ja016071v
  61. Douglass, A. G.; Czuprynski, K.; Mierzwa, M.; Kaszynski, P. J. Mater. Chem. 1998, 8, 2391. https://doi.org/10.1039/a804322a
  62. Wachter, J. Angew. Chem., Int. Ed. 1989, 28, 1613. https://doi.org/10.1002/anie.198916131
  63. Stiefel, E. I.; Coucouvanis, D.; Newton, W. E. Molybdenum Enzymes, Cofactors, and Model Systems, ACS Symposium Series 535, American Chemical Society, Washington, DC, 1993.