Development of Electronic Personal Dosimeter with Hybrid Preamplifier using Semiconductor Detector

반도체 검출기를 이용한 Hybrid 전치증폭기형 전자식 개인선량계 개발

  • Lee, B.J. (Korea Atomic Energy Research Institute) ;
  • Kim, B.H. (Korea Atomic Energy Research Institute) ;
  • Chang, S.Y. (Korea Atomic Energy Research Institute) ;
  • Kim, J.S. (Korea Atomic Energy Research Institute) ;
  • Rho, S.R. (The University of Seoul)
  • Published : 2002.03.30


An electronic personal dosimeter(EPD) with hybrid type preamplifier adopting a semiconductor detector as a radiation detector has been developed, manufactured and test-evaluated. The radiation detection characteristics of this EPD has been performance-tested by using a reference photon radiation field. After several test-irradiations to a $^{137}Cs$ gamma radiation source the radiation detection sensitivity of this EPD appeared to be $3.8\;cps/Gy{\cdot}h^{-1}$. The linearity of radiation response was kept within 8% of the dose equivalent ranges of $10{\mu}Sv{\sim}4Sv$ and the angular dependence was under less than 4% in angles of ${\pm}60^{\circ}$. It was confirmed that the energy response range was in $60{\sim}1,250keV$ given in the ISO standard. This EPD satisfied the international criteria for the EPD in the mechanical and the environmental performance test for 9 test categories according to IEC 61526.

반도체 검출기를 이용하여 Hybrid 전치증폭기를 갖는 전자식 개인선량계를 설계 제작하고, 방사선 검출 반응특성과 기계적 및 주변 환경 요건에 따른 각종 성능을 평가하였다. $^{137}Cs$ 감마 방사선을 이용한 방사선 조사 시험결과 감도는 $3.8\;cps/Gy{\cdot}h^{-1}$이고, $10{\mu}Sv{\sim}4Sv$ 범위의 선량당량 조사시 선량계의 지시값은 오차 8%이하에서 선형성이 잘 유지되었다. 방향의존성을 ${\pm}60^{\circ}$ 이내에서 4%이하이며, ISO 기준선장에 의한 에너지 반응영역은 $60{\sim}1,250\;keV$로 나타났으며, IEC 61526에 의한 선량계의 성능검사시 9개 영역의 시험항목에 대한 국제기준을 만족하였다.


  1. 이봉재, 김봉환, 장시영, 김종수, ‘실리콘 PIN 다이오드 검출기를 이용한 전자선량계 개발’ 방사선방어학회지, 25(4), 197-205(2000)
  2. W.B. Mann, Radioactivity Measurements Principles and Practice, Pergamon Press, pp. 85-88(1988)
  3. G. F. Knoll, Radiation Detection and Measurement, 2nd ed., John Wiley & Sons, New York(1989)
  4. National council on radiation protection and measurements, 'A handbook of radioactivity measurements procedures', NCRP report no. 58, P. 49(1978)
  5. Goulding, F. S. Pulse Shaping in Low-Noise Nuclear Amplifier, A Physical Approach to Noise Analysis, Nuclear Instruments and methods, 100, 493(1972)
  6. Kowalski, E. Nuclear Electronics, Springer Verlag, New York(1970)
  7. P.W. Nicholson, 'Nuclear Electronics', Chap.5, John Wiley & Son, New York(1974)
  8. K. hodyr and S. Wysock, 'Current Transients Induced by Fast Electrons and Bremsstrahlung in Polyethylene Films', Radiation Measurements, Vol. 26, No. 4, pp593-598(1996)
  9. ISO/FDIS 4037-3: X and Gamma reference radiation for calibrating dosemeters and dose rate meters and for determining their response as a function of photon energy-Paer3: Area and personal dosemeters
  10. Grosswendt, B. Concersion coefficients for calibrating individual photon dosemeters in terms of dose equivalents defined in an ICRU tissue cube and PMMA slabs. Rad. Prot. Dosim., Vol. 32, No 4, pp219-231(1990)
  11. White, D.R., Martin, R.J., and Darlison, R. Epoxy resin based tissue substitutes. Br. J. Radiol., 50, pp814-821(1977)
  12. M. Jung et al., 'Dose Response Simulations of A High Sensitivity Electronic Silicon Dosimeter', Radiat. Prot. Dosim., 51(3), pp. 157-167(1994)
  13. International Electrotechnical Commission, 'Radiation Protection Instrumentation Measurement of Personal Dose Equivalents, Hp(10) and Hp(0.07) for X, Gamma and Beta Radiations Direction Reading Personal Dose Equivalent and/or Dose Equivalent Rate Dosimeters', IEC-61526 (1998)4. Fairstein, E., and J. Hahn, Part II, Nucleonics, 2319, 81 (1965)