Clinical Application of in Vivo Dosimetry System in Radiotherapy of Pelvis

골반부 방사선 치료 환자에서 in vivo 선량측정시스템의 임상적용

  • Kim, Bo-Kyung (Department of Therapeutic Radiology, Seoul National University, College of Medicine) ;
  • Chie, Eui-Kyu (Department of Therapeutic Radiology, Seoul National University, College of Medicine) ;
  • Huh, Soon-Nyung (Institute of Radiation Medicine, Seoul National University, College of Medicine) ;
  • Lee, Hyoung-Koo (Department of Biomedical Engineering, College of Medicine, Catholic University) ;
  • Ha, Sung-Whan (Department of Therapeutic Radiology, Seoul National University, College of Medicine, Institute of Radiation Medicine, Seoul National University, College of Medicine)
  • 김보경 (서울대학교 의과대학 치료방사선과학교실) ;
  • 지의규 (서울대학교 의과대학 치료방사선과학교실) ;
  • 허순녕 (서울대학교 의학연구원 방사선의학연구소) ;
  • 이형구 (카톨릭대학교 의과대학 생체의공학교실) ;
  • 하성환 (서울대학교 의과대학 치료방사선과학교실, 서울대학교 의학연구원 방사선의학연구소)
  • Published : 2002.03.30


The accuracy of radiation dose delivery to target volume is one of the most important factors for good local control and less treatment complication. In vivo dosimetry is an essential QA procedure to confirm the radiation dose delivered to the patients. Transmission dose measurement is a useful method of in vivo dosimetry and it's advantages are non-invasiveness, simplicity and no additional efforts needed for dosimetry. In our department, in vivo dosimetry system using measurement of transmission dose was manufactured and algorithms for estimation of transmission dose were developed and tested with phantom in various conditions successfully. This system was applied in clinic to test stability, reproducibility and applicability to daily treatment and the accuracy of the algorithm. Transmission dose measurement was performed over three weeks. To test the reproducibility of this system, X-tay output was measured before daily treatment and then every hour during treatment time in reference condition(field size; $10 cm{\times} 10 cm$, 100 MU). Data of 11 patients whose pelvis were treated more than three times were analyzed. The reproducibility of the dosimetry system was acceptable with variations of measurement during each day and over 3 week period within ${\pm}2.0%$. On anterior- posterior and posterior fields, mean errors were between -5.20% and +2.20% without bone correction and between -0.62% and +3.32% with bone correction. On right and left lateral fields, mean errors were between -10.80% and +3.46% without bone correction and between -0.55% and +3.50% with bone correction. As the results, we could confirm the reproducibility and stability of our dosimetry system and its applicability in daily radiation treatment. We could also find that inhomogeneity correction for bone is essential and the estimated transmission doses are relatively accurate.


  1. 우홍균, 하성환. ‘고에너지 방사선치료용 on-line 선량측정시스템을 위한 알고리즘의 개발’, 대한방사선방어학회지, 22(3), 207-218(1997)
  2. 윤형근, ‘고에너지 방사선치료용 in vivo 선량측정시스템을 위한 투과선량 계산 알고리즘연구’, 서울대학교 대학원 박사학위논문, 2000
  3. 우홍균, 허순녕, 이형구, 하성환, ‘투과선량을 이용한 on-line 선량측정에서 불균질 조직에 대한 선량 보정’, 대한방사선방어학회지,23(3), 139-147(1998)
  4. F.M. Kahn, The Physics of Radiation Therapy, 2nd ed., Williams & Wilkins, Baltimore(1994)
  5. 김미숙, 류성렬, 조철구 등. ‘국내 병원별 방사선치료의 진료 구조 현황’,대한방사선종양학회지, 17(2), 172-178(1999)
  6. M.M. Urie, M. Goitein, K. Doppke, J.G. Kutcher, T. LoSasso, R. Mohen, J.E. Munzenrider, M. Sontag, J.W. Wang, 'The role of uncertainty analysis in treatment planning', Int J Radiat Oncol Biol Phys., 21(1), 91-107(1991)
  7. M. Voordeckers, H. Goossens, J. Rutten, W. Van den Bergaert, 'The implementation of in vivo dosimetry in a small radiotherapy department', Radiother Oncol., 47(1), 45-48(1998)
  8. G. Van Tienhoven, B.J. Mijnheer, H. Bartelink, D.G. Gonzalez, 'Quality assurance of the EORTC Trial 22881/10882: boost versus no boost in breast conserving therapy. An overview', Strahlenther Onkol., 173(4), 201-207(1997)
  9. L. Cozzi, A. Fogliata-Cozzi, 'Quality assurance in radiation oncology. A study of feasibility and impact on action levels of an in vivo dosimetry program during breast cancer irradiation', Radiother Oncol., 17(1), 29-36(1998)
  10. M. Essers, J.H. Lanson, B.J. Minjunheer, 'In vivo dosimetry during conformal therapy for prostate cancer', Radiother Oncol., 29(2), 271-279(1993)
  11. S. Heukelom, J.H. Lanson, B.J. Mijinheer, 'In vivo dosimetry during pelvic treatment', Radiother Oncol., 25(2), 111-120(1992)
  12. C.J. Millwater, A.S. MacLeod, D.I.Thwaites, 'In vivo semiconductor dosimetry as part of routine quality assurance', Br J Radiol., 71(846), 661-668(1998)
  13. A. Adeyemi, J. Lord, 'An audit of radiotherapy patient doses measured with in vivo semiconductor detectors', Br J Radiol., 70(832), 399-408(1997)
  14. A. Noel, P. Aletti, P. Bey, L. Malissard, 'Detection of errors in individual patients in radiotherapy by systemic in vivo dosimetry', Radiother Oncol., 34(2), 144-151(1995)
  15. L. Miszczyk, J. Wydmanski, 'Evaluation od delivered dose changes during radiation therapy', Acta Oncol., 33(2), 197-201(1999)
  16. C.R. Edwards, M.H. Grieveson, P.J. Mountford, P. Rolfe, 'A survey of current in vivo radiotherapy dosimetry practice', Br J Radiol., 70(832), 299-302(1997)
  17. R. Alecu, J.J. Feldmeier, M. Alecu, 'Dose perturbations due to in vivo dosimetry with diodes', Radiother Oncol., 42(3), 289-291(1997)
  18. R. Alecu, M. Alecu, T.G. Ochran, 'A method to improve the effectiveness of diode in vivo dosimetry', Med Phys., 25(5), 746-749 (1998)
  19. R. Alecu, M. Alecu, 'In vivo rectal dose measurements with diodes to avoid misadministration during intracavitary high dose rate brachytherapy for carcinoma of cervix', Med Phys., 26(5), 768-770(1999)
  20. R.J. Meiler, M.B. Podgorsak, 'Characterization of the response of commercial diode detectors used for in vivo dosimetry', Med Dosim., 22(1), 31-37(1997)
  21. M. Ribas, N. Jornet, T. Eudaldo, D. Carabante, M.A. Duch, M. Ginjaume, G. Gomez de Segura, 'Midplane dose determination during total body irradiation using in vivo dosimetry', Radiother Oncol., 49(1), 91-98(1998)
  22. C.B. Saw, J. Shi, D.H, Hussey, 'Energy dependence of a new solid state diode for low energy photon beam dosimetry', Med Dosim., 23(2), 95-97(1998)
  23. R. Sjogren, M. Karlsson, 'Influence of electron contamination on vivo surface dosimetry for high-energy photon beams', Med Phys., 25(6), 916-921(1998)
  24. D.M. Frye, S.N. Rustgi, 'Diode verification of routine electron-beam treatments', Med Dosim., 24(1), 43-48(1999)
  25. S. Howlett, L Duggan, S. Bazley, T. Kron, 'Selective in vivo dosimetry in radiotherapy using P-type semiconductor diodes: a reliable quality assurance procedure', Med Dosim., 24(1), 53-56(1999)
  26. J.A. Antolak, J.H. Cundiff, C.S. Ha, 'Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides', Int J Radiat Oncol Biol Phys., 40(1), 101-108(1998)
  27. T. Loncol, J.L, Greffe, S. Vynckier, P. Salliet, 'Entrance and exit dose measurements with semiconductors and thermoluminescent dosimeters: a comparison of methods and in vivo results', Radiother Oncol., 41(2), 179-187(1996)
  28. M. Stasi, V. Casanova Borca, C. Fiorino, 'Measurements of exit dose profiles in 60Co beams with a conventional portal film system', Br J Radiol., 70(840), 1283-1287(1997)
  29. L.E. Reinstein, G.R. Gluckman, H.I. Amols, 'Predicting optical densitometer response as a function of light source characteristics for radiochromic film dosimetry', Med Phys., 24(12), 1935-1942(1997)
  30. H.M. Ferguson, G.D. Lambert, R.M. Harrison, 'Automatized TLD system for tumor dose estimation from exit dose measurements in external beam radiotherapy', Int J Radiat Oneol Biol Phys., 38(4), 899-905(1997)
  31. P. Scalchi, P. Francescon, 'Calibration of a MOSFET detection system for 6 MV in vivo dosimetry', Int J Radiat Oncol Biol Phys., 40(4), 987-993(1998)
  32. T.R. McNutt, T.R. Mackie, P. Reckwert, B.R. Paliwal, 'Calculation of portal dose using the convolution/superposition method', Med Phys., 23(8), 527-535(1996)
  33. R. Boellaard, M. Herk, B.J. Mijnheer, 'The dose-response relationships of a liquid-filled electronic portal image device', Med Phys., 23(9), 1601-1611(1996)
  34. R. Boellaard, M. Herk, B.J. Mijnheer, 'A convolution model to convert transmission dose images to exit dose distributions', Med Phys., 24(2), 189-199(1997)
  35. R. Boellaard, M. Essers, M. Herk, H. Uiterwaal, B. Mijnheer, 'A new method to obtain the midplane dose using portal in vivo dosimetry', Int J Radiat Oncol Biol Phys. 41(2), 465-474(1998)
  36. K.L. Pasma, M. Kroonwijk, J.C. de Boer, A.G. Visser, B.J. Heijmen, 'Accurate portal dose measurement with a fluoroscopic electronic portal image device (EPID) for open and wedged beams and dynamic multileaf collimation', Phys Med Biol., 43(8), 2047-2060(1998)
  37. M. Essers, R. Boellaard, M, van Herk, J.H. Lanson, B. Mijnheer, 'Transmission dosimetry with a liquid-filled electronic portal imaging device', Int J Radiat Oncol Biol Phys., 34(4), 931-941 (1996)
  38. M. Kroonwijk, K.L. Pasma, S. Quint, P.C. Koper, A.G. Visser, B.J. Heijmen, 'In vivo dosimetry for prostate cancer patients using an electronic portal imaging device (EPID): demonstration of internal organ motion', Radiother Oncol., 49(2), 125-132 (1998)