Recognition of DNA Damage in Mammals

  • Lee, Suk-Hee (Department of Biochemistry and Molecular Biology, and the Walther Oncology Center, Indiana University School of Medicine, and the Walther Cancer Institute)
  • Received : 2001.11.11
  • Published : 2001.11.30

Abstract

DNA damage by UV and environmental agents are the major cause of genomic instability that needs to be repaired, otherwise it give rise to cancer. Accordingly, mammalian cells operate several DNA repair pathways that are not only responsible for identifying various types of DNA damage but also involved in removing DNA damage. In mammals, nucleotide excision repair (NER) machinery is responsible for most, if not all, of the bulky adducts caused by UV and chemical agents. Although most of the proteins involved in NER pathway have been identified, only recently have we begun to gain some insight into the mechanism by which proteins recognize damaged DNA. Binding of Xeroderma pigmentosum group C protein (XPC)-hHR23B complex to damaged DNA is the initial damage recognition step in NER, which leads to the recruitment of XPA and RPA to form a damage recognition complex. Formation of damage recognition complex not only stabilizes low affinity binding of XPA to the damaged DNA, but also induces structural distortion, both of which are likely necessary for the recruitment of TFIIH and two structure-specific endonucleases for dual incision.