DOI QR코드

DOI QR Code

Effect of Protein Supplementation, O2 Concentration and Co-Culture on the Development of Embryos Produced by Nuclear Transfer Using Cultured Cumulus Cells in Hanwoo (Korean Cattle)

  • Im, G.S. (National Livestock Research Institute, RDA) ;
  • Yang, B.S. (National Livestock Research Institute, RDA) ;
  • Park, S.J. (National Livestock Research Institute, RDA) ;
  • Im, S.K. (National Livestock Research Institute, RDA) ;
  • Yang, B.C. (National Livestock Research Institute, RDA) ;
  • Yi, Y.J. (Department of Animal Science, Chungnam National University) ;
  • Park, C.S. (Department of Animal Science, Chungnam National University)
  • Received : 2001.01.31
  • Accepted : 2001.04.27
  • Published : 2001.09.01

Abstract

The effect of protein supplementation, $O_2$ concentration and co-culture on the development of embryos produced by nuclear transfer using cultured cumulus cell was investigated. Recipient oocytes and cumulus cells were obtained from the ovaries of the slaughtered Hanwoo cows. Donor cumulus cells were cultured in Dulbecco's modified Eagle medium containing 10% fetal bovine serum at 5% $CO_2$ in air at $38.5^{\circ}C$. The 1 to 6 passages of cumulus cells were isolated and used as donor cells. The in vitro matured oocytes were enucleated and then the isolated donor cells were introduced. One $15{\mu}s$ pulse of 180 volts was applied to induce the fusion between karyoplast and cytoplast. The fused embryos were activated with $10{\mu}M$ calcium ionophore for 5 min and 2 mM 6-dimethylaminopurine for 3 h. To examine the effect of protein supplementation, nuclear transfer (NT) embryos were cultured in one of the following 4 treatments : 1) CR1aa + 3 mg/ml BSA for 7 days ; 2) CR1aa + 10% FBS for 7 days ; 3) CR1aa + 1.5 mg/ml BSA + 5% FBS for 7 days ; and 4) CR1aa + 3 mg/ml BSA for first 3 days and then CR1aa + 1.5 mg/ml BSA + 5% FBS for 4 days. Culture took place at 5% $CO_2$, 5% $O_2$ and 90% $N_2$ at $38.5^{\circ}C$. Although there were no significant differences in cleavage rate among different protein supplements, the rates of blastocyst formation were significantly different. When NT embryos were cultured in the medium supplemented with only BSA, they could develop to only morula not to blastocyst. However, when FBS was supplemented, NT embryos developed to blastocyst stage. In order to investigate the effect of $O_2$ concentration and co-culture, NT embryos were cultured in CR1aa + 1.5 mg/ml BSA + 5% FBS with or without cumulus cell co-culture at an atmosphere of 5% $CO_2$ in air (20% $O_2$) or 5% $CO_2$, 5% $O_2$, 90% $N_2$ (5% $O_2$) at $38.5^{\circ}C$ for 7 days. The percentage of blastocyst development was significantly higher when the NT embryos were cultured at an atmosphere of 5% $O_2$ than that of 20% $O_2$ (p<0.05). However, there was no significant difference between with and without cumulus cell co-culture at an atmosphere of 5% $O_2$ or 20% $O_2$. Fifty embryos were transferred to 25 recipients and 5 recipients were pregnant at 100 days. From 5 pregnant cows, only one cow was delivered of female twin. In conclusion, the embryos reconstructed by enucleation of metaphase II oocytes and introduction of the cycling and quiescent cumulus donor cells in Hanwoo had developmental potential to term after embryo transfer to recipient cows.

Keywords

$O_2$ Concentration;Blastocyst;Cumulus Cell;Nuclear Transfer;Embryo