Fabrication of the Windmill Type Ultrasonic Its Characteristics of Torque and Bidirectional Revolution

풍차형 초음파 전동기의 제작과 토크 및 정$\cdot$역회전특성

  • 김영균 (한국교원대 기술교육과) ;
  • 김진수 (한국교원대 기술교육과)
  • Published : 2001.03.01


In this paper, the windmill type ultrasonic motors with 11.35 mm diameter, 2.87 mm thickness of metal endcap and 1.47 g weight were fabricated. Effects of slots and thickness on torque characteristic in the windmill type ultrasonic motor were investigated, when stator's slots were changed from 4, 6, 8 and thickness 0.15 mm, respectively. Specially designed metal endcaps with windmill shaped cutting can provide longitudinal and torsional displacements simultaneously as the ceramic disk vibrates radically. The windmill type ultrasonic motor has only three components: a stator element with windmill shape slotted metal endcap, a rotor and bearing. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The ultrasonic motor fabricated here was the windmill type ultrasonic motor operated by single-phase AC source. Bidirectional revolution using single-phase high frequency for driving the ultrasonic motor was presented.


  1. C. Kusakabe, Y. Tornikawa, S. Takahashi. and T. Takano, 'Effect of Pressing Force Applied to a Rotor on Disk-Type Ultrasonic Motor Driven by Self-Oscilloation', Jpn. J. Appl. Phys .. Vol. 37, part 1, No. 5B, pp. 2966-2969, 1998 https://doi.org/10.1143/JJAP.37.2966
  2. J. Tsujino, R. Suziki, and M. Takeuchi, 'Load Characteristics of Ultrasonic Rotary Motor Using a Longitudinal-Torsional Vibration Converter with Diagonal Slits. Large Torque Ultrasonic Rotary Motor', Ultrasonics, Vol. 34, pp. 265-269. 1996 https://doi.org/10.1016/0041-624X(95)00067-D
  3. 김영균, 김진수, '풍차형 초음파 전동기의 회전자에 인가된 힘이 회전특성에 미치는 영향', 한국전기전자재료학회 논문지, 13권, 5호, pp. 390-395. 2000
  4. Jin-Soo Kim, Man-Ju, Park, K. Uchino, 'Composite Ultrasonic Motors Using a Piezoelectric Disc and an Elastic Body of 'Windmill' Type', Ferroelectrics, Vol. 232, pp. 185-190, 1999 https://doi.org/10.1080/00150199908015790
  5. B. Koc, A. Dogan, Y. Xu, R. E. Newnham, and K. Uchino, 'An Ultrasonic Motor Using a Metal-Ceramic Composite Actuator Generating Torsional Displacement', Jpn. J. Appl. Phys., Vol. 37, pt.1 No. 10, pp. 5659- 5662. 1998 https://doi.org/10.1143/JJAP.37.5659
  6. 김영균, 김진수, '압전 초음파 전동기의 토크측정 시스템', 대한전기학회하계학술대회 논문집, 용평리조트, pp. 1780-1782, 1999.7
  7. J. Wallaschek, 'Piezoelectric Ultrasonic Motors', Journal of Intelligent Material Systems and Structures, Vol. 6, pp. 71-83, 1995 https://doi.org/10.1177/1045389X9500600110
  8. Q. C. Xu, S. Yoshikawa, J. R. Belsick, and R. E. Newnham, 'Piezoelectric Composites with High Sensitivity and High Capacitance for Use at High Pressures', IEEE Transactions on Ultrasonics. Ferroelectrics. and Frequency Control. Vol. 38, No.6, pp. 634-638, 1991 https://doi.org/10.1109/58.108862
  9. 김진수, 이명훈 공역, 초음파 전동기의 이론과 응용, 성안당, pp. 59-68, 2000
  10. S. Ueha, Y. Tomikawa, M. Kurosawa, and N. Nakamura, Ultrasonic Motors Theory and Applications, Clarendon Press, Oxford, pp. 1-7, 1993