Simulations of Two-Dimensional Electronic Correlation Spectra

  • Published : 20010800

Abstract

Two-dimensional (2D) correlation method, which generates the synchronous and the asynchronous 2D spectrum by complex cross correlation of the Fourier transformed spectra, is an analysis method for the changes of the sample spectrum induced by vari ous perturbations. In the present work, the 2D electronic correlation spectra have been simulated for the cases where the sample spectrum composed of two gaussian bands changes linearly. When only the band amplitudes of the sample spectrum change, the synchronous spectrum shows strong peaks at the band centers of the sample spectrum, but the asynchronous spectrum does not make peaks. When the sample spectrum shifts without changing intensity and width, the synchronous spectrum shows peaks around the initial and final positions of the band maximum and the asynchronous spectrum shows long peaks spanning the shifting range. The band width change produces the complex 2D correlation spectra. When the sample spectrum shifts with band broadening, the width change by 50% of full width at half maximum (FWHM) does not give so large an effect on the correlation spectrum as the spectral shift by one half of FWHM of the sample spectrum.

References

  1. Appl. Spectrosc. v.47 no.1329 Noda, I.
  2. Appl. Spectrosc. v.54 no.994
  3. Chemical Applications of Ultrafast Spectroscopy Fleming, G. R.
  4. Appl. Spectrosc. v.53 no.1392 Czarnecki, M. A.
  5. J. Chem. Phys. v.112 no.1907 Hamm, P.;Lim, M.;Degrado, W. E.;Hochstrasser, R. M.
  6. Phys. Rev. Lett. v.74 no.3061 Tominaga, K.;Yoshihara, K.
  7. J. Chem. Phys. v.106 no.3854 Steffen, T.;Duppen, K.
  8. J. Chem. Phys. v.106 no.2259 Tokmakoff, A.;Fleming, G. R.
  9. Appl. Spectrosc. v.54 no.968 Sonoyama, M.;Nakano, T.
  10. Appl. Spectrosc. v.54 no.963 Dzwolak, W.;Kato, M.;Shimizu, A.;Taniguchi, Y.
  11. Macromolecules v.32 no.6307 Ren, Y.;Murakami, T.;Nishioka, T.;Nakashima, K.;Noda, I.;Ozaki, Y.
  12. Appl. Spectrosc. v.54 no.974 Kimura, F.;Komatsu, M.;Kimura, T.
  13. J. Phys. Chem. v.100 no.10810 Muller, M.;Buchet, R.;Fringeli, U. P.
  14. In Two-Dimensional Vibrational Spectroscopy, Advances in Multi-Photon Processes and Spectroscopy v.12 Cho, M.;Lin, S. H.(eds.);Villaeys, A. A.;(eds.);Fujimura, Y.(eds.)
  15. Appl. Spectrosc. v.54 no.986 Czarnecki, M. A.
  16. Phys. Rev. Lett. v.84 no.1411 Zhao, W.;Wright, J. C.
  17. Appl. Spectrosc. v.44 no.550 Noda, I.
  18. Appl. Spectorsc. v.54 no.939 Ismoyo, F.;Wang, Y.;Ismail, A. A.
  19. J. Phys. Chem. v.100 no.7326 Liu, Y.l;Ozaki, Y.;Noda, I.
  20. J. Phys. Chem. v.100 no.8665 Noda, I.;Liu, Y.;Ozaki, Y.
  21. Photochemistry Calvert, J. G.;Pitts, Jr. J. N.
  22. J. Am. Chem. Soc. v.111 no.8116 Noda, I.
  23. Appl. Spectrosc. v.54 no.948 Nabet, A.;Auger, M.;Pezolet, M.
  24. J. Chem. Phys. v.108 no.3897 Ulness, D. J.;Kirkwood, J. C.;Albrecht, A. C.
  25. J. Phys. Chem. v.102 no.6655 Wang, Y.;Murayama, K.;Myojo, Y.;Tsenkova, R.;Hayashi, N.;Ozaki, Y.
  26. Appl. Spectrosc. v.54 no.931 Schultz, C. P;Barzu, O.;Mantsch, H. H.
  27. Appl. Spectrosc. v.54 no.A236 Noda, I.
  28. Biospectroscopy v.2 no.341 Gericke, A.;Gadaleta, S. J.;Brauner, J. W.;Mendelsohn, R.
  29. J. Phys. Chem. v.100 no.8674 Noda, I.;Liu, Y.;Ozaki, Y.
  30. Colloids Surfaces A v.171 no.225 Elmore, D. L.;Dluhy, R. A.