Effects of Ventilation Condition and Ventilating Hole Sizes to Improve Quality Onion (Allium cepa. L) under Room Temperature

Chan-Jung Lee, Hee-Dae Kim, Eun-Ho Cheung*, Woo-II Kim and Jun-Kyu Suh**

Onion Experiment Station, Kyongnam A.R.E.S., Changnyeong 635-820, Korea
*Kyongnam A.R.E.S., Changnyeong 635-820, Korea
**Department of Horticulture, Kyungpook National University, Taegu 702-701, Korea

Abstract

This study was conducted to improve the storability of onion bulbs by assembly simple house storage and to reduce the rottenness caused by field open storage. Allium cepa cv. Changnyungdeago, late strain, was used for the test at the storage condition of natural ventilation of levels 2, forced ventilation of levels 2, field open storage and 75mm, 100mm, and 125mm ventilating holes. Mean temperature and relative humidity were not significantly different by ventilation conditions. Mean temperature was lower in forced ventilation than that of in natural ventilation and non-ventilation, and relative humidity was a little higher in ventilation treatment than those of the others. Weight loss of onion bulbs were 2.5%, 2.9%, 3%, 4.3% in field open storage, non ventilation, natural ventilation of levels 2 and forced ventilation of levels 2 respectively. Rotting rate in natural ventilation of levels 2 and forced ventilation of levels 2 were 27.7% and 25.4% respectively but 34.6% and 37.8% in non ventilation and field open storage. Therefore, the treatment of ventilation reduced the rottenness of storage onion bulbs. The smaller the size of a ventilating hole, the lower mean temperature was maintained. The relative humidity was some high in July, but didn’t showed significantly difference in August and September. With small size of a ventilating hole, the strong wind velocity was obtained, and wind velocity by position was weaker in the middle part than both ends. Rotting rates in 75mm, 100mm, and 125mm ventilating holes were 17.9%, 15.3% and 14.1% respectively.

Key words : Onion, ventilation, ventilating holes, storage, rottenness

서 론

양파는 마늘과 함께 재배역시가 가장 긴 식물로서
많이 발생한다(1,2). 이러한 손실을 줄이기 위해서 수확 후 저장조건인 적温(3,4), 방사선 조사를 이용한 저
장(5,6,7,8), 충전처리(9,10), 약제살포(11,12), 저장방법(13),
와이어처리(14), CA저장(15) 등에 많은 연구를 수행 해
오고 있다. 수확 후 조건으로 상대습도도로 양파를 저
장할 때 습도 98~100%시 목록음과 총균이 발생이 없고,
75~80%에서는 근부와 인면에서 부패가 많았다고 하였
으며(16), 밑제용기에 Soda-Lime을 참가하였을 때 110일까
지 부관율이 5%밖에 되지 않았다고 보고하였다(17).
우리 나라의 양파재배는 가을에 정식하여 월경후 5~
6월에 성숙하는 추계재배에 주로 의존하고 있으며, 논가
에서와 저장고의 부패와 부각으로 부각을 촉박히고 고
상상의 악화 및 수확량의 늪확종 문제로 수부 수확 즉 간이저장으로 연결되어 부관이 대발생하고
있는 실정이다. 또한 간이저장도 저장고 및 논가의 부
ViewPager으로 노비리에 하기 때문에 상부에 부관 및 총균을 맡겨
주는 정도로 하고 있어 모든 다목적에 의한 부관 발생은
이나を選기 또한ผลกระทบ가 있는 실정이다. 이와 같이 재
배관리 및 수확 전·후 처리기술 부족에 의해 저장고 부
관가 대발생, 수확한 양파의 도착시에서 하자가 발생되
여 국산양파의 신용도가 저하되고 유통 중 부관발생으로
소비자에게 신용품에 대한 불안감을 증가시키고 있다.
따라서 본 연구는 농가단위에서 간이로 저장할 때 부
관을 간압시키기 위한 적절 통풍조건 및 통풍구 재료의
크기를 구명함으로써 양파 수급의 안정화 및 농가의 안
정적 소득증대를 도모할 목적으로 실시하였다.

재료 및 방법

재료

공기재료는 참냥치면의 일반농가에서 수확된 참냥차
고 양파를 구입하여 시료로 사용하였다.

저장조건

조사항목은 각 시험구별로 외형이 한계로 무게가
200~250g인 양파를 신발하여 20kg 그물망에 담아 조하
식 간이하우스에 입고 후 왜건성의 배치 3단층으로 배
치하여 1997년과 1999년의 3년간 시험을 실시하였다.
통풍조건시험은 농가에서 현장적으로 하는 노지작약
과 자체 조립한 간이 하우스에서 통풍구, 2단 갭에
통풍구를 설치하여 저장하는 처리를 두었다. 통풍구 재
료 크기시험에서는 PVC 파이프 통풍구의 직경이
75mm, 100mm 및 125mm의 3처리를 두었으며, 각에는
2열 6단으로 하였다.

저장시설

노지 야외 저장은 바닥에 길이 150cm의 각목을 설치
하여 그 위에 양파를 적재 후 상부에 비닐과 총균을
덮어 관리하였고, 조합식 간이하우스 저장은 록 1.5m×
길이 3.0m×높이 1.8m의 0.065mm비닐과 55% 총균을
덮어 땋였다. 자연하우스 및 부품의 높이는 1.5cm로
하여 양과 간격지 차례와 맞지 않도록 하였고, 저장은
항상 최상 상태로 두었다. 비닐은 빠른 날씨 하우
스의 중간까지 깊이 옮겼고 비가 내리면 완전히 내리
양파가 쌓이지 않도록 크림으로 고정하여 관리하였다.

송풍시설

통풍조건 시험에서 통풍구의 재료는 직경 125mm의
PVC 파이프를 사용하였고, 파이프 표면이 5cm간격으로
직경 5mm크기의 구멍을 뚫었다. 자연 통풍은 양쪽 끝을
공기가 통과하도록 하였고, 강제통풍은 한쪽 끝으로
공기가 통과할 수 있도록 하였고 통풍구 설치는 2단간격으로
4개씩 총8개를 설치하였다. 통풍구 재료에 크기시험에서 통
풍구 재료의 크기는 직경 75mm, 100mm, 125mm의 PVC
파이프를 사용하였고, 통풍구 설치는 3단 갭으로 4개의
통풍구를 사용하였으며 파이프 표면의 구멍은 통풍조건
시험과 동일하게 처리하였다. 송풍기는 3ක치기 모터
을 사용하여 트롤링에 연결하였으며, 조사시간은 시험
용이 이용하여 2시간 간격으로 15분간 송풍 되도록 하였다.

품질조사

양과 저장 중 온도 및 상대습도는 최고저치 온도계
및 건습계 온도계를 이용하여 측정하였다. 구분감소율
조사항목은 조사항목을 임의로 총 두께에 대한 백분율로
타치하였고, 저장조건은 7월 수입부터 9월 수입까지 부관
된 수관을 각 일고리 총 수관에 대한 백분율로 부관
을 나타내었다. 송풍기의 소음은 송풍기 앞 1m거리
에서 측정하였고, 통풍구 재료 크기별 풍속은 송풍기
 설치 부위에서 60cm, 120cm, 180cm, 240cm 거리의 통
풍구 표면으로부터 나온 풍속을 송풍기 설치 부위에서
나온 풍속을 측정기(TSI 8330, SAFELAB)로 측정하여 비교하였다.
결과 및 고찰

통풍조건별 온도 및 습도 변화

양파 가격시 통풍조건에 따른 처리별 평균기온과 상대습도는 Fig. 1과 같다. 평균기온은 8월 하순에 최고에 달하였으며, 노지아재비에서 가장이 23.6~36.6℃가 높았으나 모든 처리는 보이지 않았다. 그러나 무통풍구에 비해 강제통풍 2단에서는 1.2~4.8℃가 높아 노지아재비에서 보다는 편차가 조금 높았다. 최고 기온은 노지아재비에 비해 강제통풍 2단에서는 1.4~8.2℃ 높았으며, 특히 8월 중순부터 하순까지는 강제통풍2단의 최고 기온이 39℃까지 유지되었다. 상대습도는 장기기간 7월과 8월은 8월 중순에서 보았으며, 저장기간 중 노지 연작은 65.4~84.3%, 무통풍구는 63.9~78.9%로 유지되었고, 강제통풍 2단은 72.0~84.4%로 유지되어 상대적으로 노지연작 및 무통풍구에 비해 강제통풍 2단이 높았다. Woolman & Barnell (1973) (18)에 의하면 수분은 주로 인근의 대주의 표면으로 증발하고 대부분을 통하여 배출된다. 양파 수확 후 통풍이 좋은 곳에서 양파구가 서로 닿지 않게 배치하여 건조시키지 않으면 양파 자체의 수분과다와 호흡열 그리고 자연기온이 고통의 이유로 부패가 많이된다고 한다(19). 이 외 같이 노지연작에 비해 조립간 간 하우스 저장에서 편도 및 상대습도가 높은 것은 양파의 흡습에 의해 발생한 일기의 수직적 흐름에 의해 통풍에 의한 표면부의 배로 인한 수분의 증발에 의한 것으로 생각된다.

통풍조건별 구성중소율

저장 중 통풍조건별 구성중소율 Fig. 2에서 보면, 저장기간에서의 구성중소율은 7.2%, 무통풍에서는 2.9%, 자연통풍 2단에서는 3%, 강제통풍 2단에서는 4.3%였다. 여기서 구성중소율 차이를 보이는 것은 호흡에 의한 것보다는 통풍 처리에 의한 외피의 건조증가구 구성중소율에 영향을 줬 것으로 보여진다.

장기저장시 업고기시를 늦추기 위해 일반건조한 양파의 구성중소가 수확당일 입고한 양파에 비해 극히 미약함을 보였는데 이는 중량감소에 대한 호흡의 역할은 비교적 작고 대부분은 구조부에 수분의 증발에 의한 것으로 추정된다고 하였다(18).

Fig. 2. Weight loss of onion bulbs on ventilation condition during the storage.

통풍조건별 저장성

양파 저장중 부패율은 Fig. 3에서 보는 바와 같이 7월 중순에는 처리간 큰 차이가 없었지만 시간이 갈수록 부패율은 큰 차이를 보여 8월 하순에는 자연통풍 2단 27.7%, 강제통풍 2단 35.3%인데 비해 무통풍 34.6%, 노지아재비 37.8%로 통풍처리구에서 부패가 적었다. 양파는 수확전 직후 열전달가속화 구의 진조를 촉진시키고 Fusarium, Botrytis구의 번식을 막아 저장중의 부패를 경감시키므로 빠가 많은 해에는 효과가 크다고 한다 (2, 17, 20, 26). 국내의 저장시설로서는 파수단지통층 중심으로 농가에 보급되기 시작한 반지하식 또는 비상식 저장고가 개발되었으며, 동(31)은 제조 과실류를 포함한 모든 농산물을 늘고 저장할 수 있는 새로운 조립식 저장고를 개발하여 시험하였던 바 좋은 결과를 얻었다.
고 보고하였다. 양파는 6월에 수확되어 상온에서 3개 월정도 저장이 가능하다. 수확후 적정한 위치에 재배농가에서는 간이 저장시설이 없다. 이것이 문제인데 실제로 1993년산 양파재배농가에서는 과잉생산으로 인한 가격 하락과 함께 구매자가 없어 20kg 말에 넣어 야간서로 보관하는 동안 상당한 양의 부패가 발생하였다. 본 연구에서는 통풍처리시 부패가 적은 것은 적재된 양파를 위에 아재로 통풍구를 설치하여 공기유동이 원활하였고, 통풍에 의한 양파의 육부과 겹질의 수분이 제거되어 병원균의 유입이 방지되었기 때문이다. 양파 외의의 조직이 건조하게 되면서 병원균에 대한 저항성을 가지고 효과가 있던 것으로 생각되며, 또한 강수 등으로 적외선 양파의 측면이 직접적으로 노출되지 않았기 때문에 발전하였다. 반면 노지 야채의 경우는 강수시 적재된 양파 외의 측면이 직접 노출될 뿐 아니라 비닐과 저장부가 밀착되 어통풍이 거의 되지 않았기 때문에 부패가 많이 발생하였을 것으로 생각된다. 그러므로 재배농가에서 수확 후 간이 저장시설을 이용하여 강수를 차단하고 적재 시 일정한 크기의 통풍구나 통풍시설을 이용함으로써 부패를 줄일 수 있을 것으로 생각한다.

![Fig. 3. Rotting rate of onion on ventilation condition during the storage.](image)

통풍구 재료 크기에 따른 풍속

통풍구 재료의 크기에 따른 적절한 폭은도 및 상대습도는 Fig. 4에서 보는 바와 같다. 폭은도는 75mm통풍구에 비해 100mm통풍구에서 0.1 ~ 1.0℃ 낮았고, 125mm 통풍구에서는 0.7 ~ 1.4℃ 낮았다. 이와 같이 통풍구의 크기가 작을수록 폭은도는 다른 처리구에 비해 조금 낮았지만 처리간 훨씬 차이는 보이지 않았다. 희고, 최적온도 또한 처리간 훨씬 차이는 보이지 않았지만 75mm 통풍구에 서 조금 높았다. 상대습도는 저감 초기에 통풍구가 큰 처리구에서 조금 높았지만 8월 이후에는 거의 차이가 없었고, 75mm 통풍처리구에서는 69.5 ~ 81.3%로 유지되었고, 100mm통풍처리구와 125mm 통풍처리구에서는 69.8 ~ 81.7%와 70.3 ~ 82.3%를 보였다. 이로써 결과는 통풍구의 크기가 작을수록 적재된 양파와 위와 아재의 공간이 적어 공기 유통이 용이하고, 양파 외의의 조직의 다운 처리구에 비해 느리게 진행되어 저감 초기 습도가 조금 낮아진 것으로 생각된다.

![Fig. 4. Temperature and relative humidity on diameter of ventilating holes during the storage.](image)

통풍구 재료 크기에 따른 풍속

통풍구 재료 크기에 따른 풍속은 통풍구에 있어 상표적 결과(Table 1) 송풍기만 1m 거리에서 송풍기의 풍속은 8.62m/s였고, 통풍구 표면의 구멍에서 나오는 풍속은 125mm 통풍구에서는 0.87 ~ 2.80m/s, 100mm 통풍구에서는 0.91 ~ 2.93m/s, 75mm 통풍구에서는 1.01 ~ 3.04m/s였다. 풍속은 통풍구의 크기가 작을수록 강했고, 통풍구의 부재별 풍속은 양쪽면부의 풍속보다 중간부위의 풍속이 낮았다.

| Table 1. Ventilation in distance of outlets on diameter of ventilating holes (m/s) |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Diameter | 125mm ventilating holes | 100mm ventilating holes | 75mm ventilating holes |
| ventilation | 8.62 | 1.31 | 1.00 | 0.87 | 2.80 | 1.37 | 1.05 | 0.91 | 2.93 | 1.42 | 1.12 | 1.01 | 3.04 |
| *Front of Ventilation Meter |
동종구 재료 크기별 저장성

동종구 재료 크기에 따른 시기별 저장성은 Fig. 5와 같다. 9월 성숙 75mm 동종구에서는 17.9%, 100mm 동종구에서는 15.3%, 125mm 동종구에서는 14.1%로 동종구 크기가 클수록 부패율은 낮았지만 차이가 유의성이 없었다. 이러한 결과는 동종구의 크기가 클수록 암과의 사이의 공간이 넓어 공기유동이 잘 되고, 암과외부의 건조가 빨리 진행됨으로 부패균의 침입을 차단할 수 있어 부패가 줄어든 것으로 판단된다. 그런데 75mm 동종구의 경우 꼬이르 표면의 품목은 다른 처리구에 비해 강했지만 꼬이르 청정이 작아 적재량 암과 위의 아래의 공간이 거의 없어 공기 유동이 어려웠고, 암과 외의 건조가 느리게 되어 병원균의 침입이 용이하였으므로 저장된다. 그러나 간이저장지 부패율에서의 적정동종구 크기는 100mm이상을 사용하는 것이 좋을 것으로 생각된다. 또한 암과 수확 후 재배능가에서는 줄고자 까지 일시로 저장할 경우가 많으므로 적재시 적정한 간격으로 양과방 사이에 공간을 두면 공기의 유동이 원활하여 부패를 줄일 수 있을 것으로 생각된다.

![Fig. 5. Rotting rate of onion on diameter of ventilating holes during the storage.](image)

요 약

양과 간이저장지 노지야작에 의해 발생하는 부패를 감소시켜 양과의 안전저장을 위하여 조립식 간이하우스를 이용하여 동종조건 및 동종구 재료의 크기에 따른 저장성에 관한 결과는 다음과 같다. 평균온도는 노지야작에 비해 갑렇께에서 0.3~3.6℃ 높았고, 무종풍에 비해서는 1.4~8.2℃가 낮았다. 그러나 처리간 유의성이 없었다. 상대습도도 동종처리구에서 무종풍 및 노지야작에 비해 약간 높았다. 구중감소율은 노지야작에서는 2.5%, 무종풍에서는 2.9%, 자연동풍 2단에서는 3%, 강제동풍 2단에서는 4.3%였다. 8월 하순까지의 부패율은 자연동풍 2단 27.7%, 강제동풍 2단 25.4%, 인체 부패 34.6%, 노지야작 37.8%로 동종처리구에서 부패가 적었다.

동종구 재료의 크기가 클수록 평균감소율은 조금 낮았고, 상대습도는 7월에 조금 높은 경향을 보이나 8월 이후에는 차이가 거의 없었다. 동종 표면의 품목은 동종구의 크기가 작을수록 강했으며, 부패별로는 중간부위가 암률과보다 낮았다. 부패율은 75mm 동종구 17.9%, 100mm 동종구 15.3%, 125mm 동종구 14.1%로 동종구 크기가 클수록 부패는 적었다.

감사의 글

본 연구는 농촌진흥청에서 시행한 대형공동연구사업의 연구결과입니다.

참고문헌

1. 韓方邦安 (1977) 青果物保蔵論論. 建帛社. 東京. pp.163-165
2. 川崎重治 (1971) タヌキの防潮性向上と栽培上の諸条件(1). 農業国. 46. 775-778
5. 廉成 (1993) 韓의 栽培上の 考察. 農業技術学会報. 25. 82-89
6. 末広茂男, A. (1972) Present status of food irradiation research in Japan with special reference to microbiological and entomological aspects, paper
양과 건조장치 홍삼조성 및 동종구 재료의 크기가 저장에 미치는 영향

presented at the Int. Symp. on Radiation Preservation of Food, Bombay, India. p.82-89

7. 朴魯豐, 崔彌浩, 金光熙 (1972) 放射線을 이용한 양과의 보존 방법의 연구(1). 韓國農誌, 4, 84-89

8. 朴魯豐, 崔彌浩, 金光熙, 金年軒 (1974) 放射線을 이용한 양과의 보존 방법의 연구(2). 韓國農誌, 15, 163-167

9. 江原圭, 姜順鉉, 박무현, 신동화 (1986) 양과의 촉발 및 촉발처리에 따른 억제 효과. 韓國食品科學會誌, 18, 1-5

10. 江原圭, 姜順鉉, 박무현, 신동화 (1986) 蒸気處理가 양과의 生理學的 變化에 미치는 影響. 韓國食品科學會誌, 18, 6-10

17. 姜方邦, 井上, 金 (1957) 萬葉의 拘係에 관한 研究(第7報) ソーラー麹石炭などによる 拘係處理の 拘係 態況의 拘係處理에 미치는 影響. 農試學誌, 25, 237-242

21. 青葉高 (1955) 玉蔵の貯蔵及び保存に関する研究(第3報). 貯蔵中における貯蔵過程について. 農試學誌, 24, 199-203

22. 青葉高 (1964) タケネギの保存及び保持に関す 研究. 山形大学紀要, 4, 265-363

25. 大西忠喜, 森 彼人, 上岡義富 (1980) クマネギの 賞種貯蔵に関する研究(第1報). 賞種後の凍乾 法の 賞種貯蔵中の貯蔵性状の発生に及ぼす 影響. 農試學誌 55年春研究委員会, 482-483

26. 加藤 彰 (1966) ダネネギの貯蔵技術に関する研究(第7報)-貯蔵技術に関す 賞種葉の影響. 農試學誌, 35, 49-56

27. 许荣秀, 郭大學, 宋真春, 尹仁和, 李英神性, 韓前 strangers (1986) 賞種葉乾燥に関する 維持を含む 組立式 貯蔵庫 開発에 論文 研究. 農試學誌, 28, 122-130

(검수 2001년 9월 26일)