Quantum Nanostructure of InGaAs on Submicron Gratings by Constant Growth Technique

  • Published : 2001.12.01

Abstract

A new constant growth technique to conserve an initial grating height of V-groove AlGaAs/InGaAs quantum nanostructures above 1.0 $\mu\textrm{m}$ thickness has been successfully embodied on submicron gratings using low pressure metalorganic chemical vapor deposition. A GaAs buffer prior to an AlGaAs barrier layer on submicron gratings plays an important role in overcoming mass transport effects and improving the uniformity of gratings. Transmission electron microscopy (TEM) image shows that high-density V-groove InGaAs quantum wires (QWRs) are well confined at the bottom of gratings. The photoluminescence (PL) peak of the InGaAs QWRs is observed in the temperature range from 10 to 280 K with a relatively narrow full width at half maximum less than 40 meV at room temperature PL. The constant growth technique is an important step to realize complex optoelectronic devices such as one-step grown distributed feedback lasers and two-dimensional photonic crystal.

References

  1. J. KIEEME v.14 A study on Electrical and optical characteriatics of InAs/GaAs self-organized quantum dots K.Kim;C.Park;I.Bae;J.Son;B.Moon;J.Lee
  2. J. KIEEME v.13 Surface photovoltage of Al/sub0.3/Ga/sub0.7/As/GaAs multi-quantum well structures J.lee;K.Kim;J.Son;I.Bae;I.Kim;S.B.Park
  3. J. KIEEME v.7 Structural analysis of low temperature processed Schottky contacts to n-GaAs H.Lee
  4. J. Vac. Sci. Technol. B v.11 Optical analysis of quantum confined Stak effect in overgrown InGaAs/InP quantum wires O.Schilling;A.Forchel;A.Kohl;S.Brirtner
  5. Phys. Rev. B v.53 Linear and nonlinear optecal properties of realistic quantum-wire structures:The dominant role of Coulomb correlation F.Rossi;E.Molinari
  6. Phys. Rev. Lett. v.78 Shape-independent scaling of excitonic confinement in realistic quantum Wires F.Rossi;G.Goldoni;E.Molinari
  7. J. Appl.Phys. v.88 Influence of strain and quantum confinement on the optical properties of InGaAs/GaAs V-groove quantum wires C.Constanin;E.Martinet;F.Lelarge;K.Leifer;A.Rudra;E.Kapon
  8. J. Crystal Growth v.221 Constant growth of V-groove AlGaAs/GaAs multilayers on submicron gratings for complex optical devices C.Son;T.G.Kim;X-L.Wang;M.Ogura
  9. Jpn. J. Appl. Phys. v.33 Operation of 780nm AlGaAs distributed feedback lasers at 100°C with low-loss waveguide strutrue K.Inoguchi;H.Kudo;S.Sugahara;S.Ito;H.Yagi;H.Takiguchi
  10. Appl. Phys. Lett. v.73 1.1 W continuous,narrow spectral width (<1A) emission from broad-stripe distributed-feedback diode lasers (λ=0.893μm) T.Earles;L.J.Mawst;D.Botez
  11. Appl. Phys. Lett. v.75 Effect of indium segregation on optical properties of V-groove InGaAs/GaAs strained quantum wires F.Lelarge;C.Constantin;K.Leifer;A.Condo;V.Iakovlev;E.Martinet;A.Rudra;E.Kapon
  12. Appl. Phys. Lett. v.69 Improvement of carrier capture efficiency of short-period GaAs/AlGaAs quantum wire array by a new lithography method T.G.Kim;E.K.Kim;S.K.Min;J.H.Park
  13. J. Crystal Growth v.71 Thermal deformation of surface corrugations on InGaAsP crystals H.Nagai;Y.Noguchi;T.Matsuoka
  14. Appl. Phys. Lett. v.67 Carrier capture efficiency of AlGaAs/GaAs quantum wires affected by composition nonuniformity of an AlGaAs barrier layer X.Wang;M.Ogura;H.Matsuhata