• 발행 : 2001.07.01


We consider the inverse conductivity problem to identify the unknown conductivity $textsc{k}$ as well as the domain D. We show hat, unlike the case when $textsc{k}$ is known, even a two or three dimensional ball may not be identified uniquely if the conductivity constant $textsc{k}$ is not known. We find a necessary and sufficient condition on the Cauchy data (u│∂Ω, g) for the uniqueness in identification of $textsc{k}$ and D. We also discuss on failure of stability.


  1. Boll. Un. Mat. Ital. v.A23 Remark on a paper of Bellout and Friedman G. Alessandrini
  2. Trans. Amer. Math. Soc. v.347 Local uniquenessin the inverse problem with one measurement G. Alessandrini;V. Isakov;J. Powell
  3. Appl. Math. Sci. v.93 Inverse acoustic and electromagnetic scattering theory D. Colton;R. Kress
  4. J. Funct. Anal. v.59 Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains G. C. Verchota
  5. Inverse Problems v.12 Layer potential technique for the inverse conductivity problem H. Kang;J. K. Seo
  6. J. Fourier Anal. Appl. v.2 no.3 A uniqueness result on inverse conductivity problem with two measurements J. K. Seo
  7. Ann. of Math. v.116 L'integrale de Cauchy definit un operateur bournee sur L² pour courbes lipschitziennes R. R. Coifman;A. McIntosh;Y. Meyer
  8. Inverse Problems v.13 Numerical identification of discontinuous conductivity coefficients H. Kang;J. K. Seo;D. Sheen
  9. Math. Surveys and Monographs v.34 Inverse source problems
  10. SIAM J. Appl. Math. v.59 no.3 Inverse conductivity problem with one measurement: uniqueness for balls in R³
  11. Trans. Amer. Math. Soc. v.332 Inverse problem in potential theory H. Bellout;A. Friedman;V. Isakov
  12. Indian Univ. Math. J. v.38 On the uniqueness in the inverse conductivity problem with one measurement A. Friedman;V. Isakov
  13. Comm. Pure Appl. Math. v.41 On uniqueness of recorvery of discontinuous conductivity coefficient V. Isakov
  14. Proc. Amer. Math. Soc. v.122 The inverse conductivity problem with one measurement: uniqueness for convex polyhedra B. Barcelo;E. Fabes;J. K. Seo
  15. Inverse Problems v.6 On the inverse conductivity problem with one measurement V. Isakov;J. Powell