INTEGRATION FORMULAS INVOLVING FOURIER-FEYNMAN TRANSFORMS VIA A FUBINI THEOREM

  • Huffman, Timothy ;
  • Skoug, David ;
  • Storvick, David
  • Published : 2001.03.01

Abstract

In this paper we use a general Fubini theorem established in [13] to obtain several Feynman integration formulas involving analytic Fourier-Feynman transforms. Included in these formulas is a general Parseval's relation.

Keywords

analytic Feynman integral;Wiener integral;analytic Fourier-Feynman transform;convolution product. Fubini theorem;scale-invariant measurability;Parseval′s relation

References

  1. Trans.Amer.Math.Soc. v.347 Analytic Fourier-Feynman transforms and convolution T.Huffman;C.Park;D,Skoug
  2. Rocky Mountain J. Math, v.27 Convolutions and Fourier-Feynman transforms T.,Huffiman;C,Park;D,Skoug
  3. Pacific J.Math v.83 Scale-invariant measurability in Wiener space G,W,Johnson;D,L.Skoug
  4. J.Funct,Anal v.47 Integral transforms of analytic functions on abstract Wiener spaces Y,J,Lee
  5. Duke Math.J. v.12 Fourier-Wiener transforms of analytic functionals R,H,Cameron;W,T,Martin
  6. Duke Math.J. v.14 Fourer-Wiener trasforms of functionals belonging to L₂over the space C R,H,Cameron;W,T,Martin
  7. Rocky Mountain J, Math v.25 Convolution on Fourier-Wiener transform on abstract Wiener space I,Yoo
  8. J.Korean Math.Soc v.19 Scale-invariant measurability in Yeh-Wiener space K.S.Chang
  9. Michigan Math.J. v.23 An L₂analytic Fourier-Feynman transform R.H.Cameron;D.A.Storvick
  10. Adv.Math. v.4 Transformations in Wiener space and squares of quantum fields I,Segal
  11. Pacific J,Math v.15 Convolution in Fourier-Wiener transform J,Yeh
  12. Theisi A functional transform for Feynman integrals similar to the Fourier transform M.D,Brue
  13. Int.J.Math.Math,Sci v.22 Relationships among transforms.convolutions and first variations J,Kim;J,Ko;C,Park;D,Skoug
  14. J,Korean Math,Xon. v.38 A fubini theorem for analytic Feynman integrals with applications T,Huffman;D,Skoug;D,Storvick
  15. Analytic Functions (Kozubnik,1979) Lecture Notes in Math. v.798 Some Banach algebras of analytic Feynman integrable functionals R,H.Cameron;W.R.Martin
  16. Michigan Math.J, v.26 An Lp analytic Fourier-Feynman transform G,W,Johnson;D,L.Skoug
  17. Dude Math.J. v.12 some examples of Fourier-Wiener Transforms of analytic functionals R,H,Cameron
  18. J.Korean Math,Soc. v.24 Functions in the Banach algebraS(v) K.S,Chang;G,W,Hohnson;D,L,Skoug
  19. Rocky Mountain J, Math, v.28 Relationshops among the forst variation, the convolution product, and the Fourier-Feynman transform C,Park;D.Skoug;D.Storvick
  20. Michigan Math,J, v.43 Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals T.,Huffiman;C,Park;D,Skoug
  21. Psnomei.Math.J. v.10 The effect of drift on the Fourier-Feynman transform, the convolution product and the forst variation S.J.Chang;D,L,Skoug