SOME CURVATURE CONDITIONS OF n-DIMENSIONAL CR-SUBMANIFOLDS OF (n-1) CR-DIMENSION IN A COMPLEX PROJECTIVE SPACE II

Won-Ho Sohn

ABSTRACT. In the previous paper we studied n-dimensional CR-submanifolds of (n-1) CR-dimension immersed in a complex projective space $CP^{(n+p)/2}$, and especially determined such submanifolds under curvature conditions related to vertical direction. In the present article we determine such submanifolds under curvature conditions related to horizontal direction.

1. Introduction

Let M be an n-dimensional CR-submanifold of (n-1) CR-dimension isometrically immersed in a complex space form $M^{(n+p)/2}(c)$. Denoting by (J, \overline{g}) the Kählerian structure of $M^{(n+p)/2}(c)$, it follows by definition (cf. [1, 3, 5, 6, 9, 12, 14, 16]) that the maximal J-invariant subspace

$$\mathcal{D}_x := T_x M \cap JT_x M$$

of the tangent space T_xM of M at each point x in M has constant dimension (n-1). So there exists a unit vector field U_1 tangent to M such that

$$\mathcal{D}_x^{\perp} = \operatorname{Span}\{U_1\}, \quad \forall x \in M,$$

where \mathcal{D}_x^{\perp} denotes the subspace of T_xM complementary orthogonal to \mathcal{D}_x . Moreover, the vector field N_1 defined by

$$(1.1) N_1 := JU_1$$

Received February 2, 2001.

2000 Mathematics Subject Classification: 53C40, 53C55.

Key words and phrases: CR-submanifold, CR-dimension, locally symmetric, complex projective space.

Supported by the financial support of the grant of Pusan University of Foreign Studies.

266 W.-H. Sohn

is normal to M and satisfies

$$JTM \subset TM \oplus \operatorname{Span}\{N_1\}.$$

Hence we have, for any tangent vector field X and for a local orthonormal basis $\{N_1, N_\alpha\}_{\alpha=2,...,p}$ of normal vectors to M, the following decomposition in tangential and normal components:

$$(1.2) JX = FX + u^1(X)N_1,$$

(1.3)
$$JN_{\alpha} = -U_{\alpha} + PN_{\alpha}, \quad \alpha = 1, \dots, p.$$

Since the structure (J, \overline{g}) is Hermitian and $J^2 = -I$, we can easily see from (1.2) and (1.3) that F and P are skew-symmetric linear endomorphisms acting on T_xM and T_xM^{\perp} , respectively and that

(1.4)
$$g(FU_{\alpha}, X) = -u^{1}(X)\overline{g}(N_{1}, PN_{\alpha}),$$

(1.5)
$$g(U_{\alpha}, U_{\beta}) = \delta_{\alpha\beta} - \overline{g}(PN_{\alpha}, PN_{\beta}),$$

where $T_x M^{\perp}$ denotes the normal space of M at x and g the metric on M induced from \overline{g} . Furthermore we also have

(1.6)
$$g(U_{\alpha}, X) = u^{1}(X)\delta_{1\alpha}$$

and consequently

(1.7)
$$g(U_1, X) = u^1(X), \quad U_{\alpha} = 0, \quad \alpha = 2, \dots, p.$$

Next, applying J to (1.2) and using (1.3) and (1.7), we have

(1.8)
$$F^2X = -X + u^1(X)U_1, \quad u^1(X)PN_1 = -u^1(FX)N_1,$$

from which, taking account of the skew-symmetry of P and (1.4),

(1.9)
$$u^1(FX) = 0, \quad FU_1 = 0, \quad PN_1 = 0.$$

Thus (1.3) may be written in the form

$$(1.10) JN_1 = -U_1, JN_\alpha = PN_\alpha, \alpha = 2, \dots, p.$$

Moreover we may put

(1.11)
$$PN_{\alpha} = \sum_{\beta=2}^{p} P_{\alpha\beta} N_{\beta}, \quad \alpha = 2, \dots, p,$$

where $(P_{\alpha\beta})$ is a skew-symmetric matrix which satisfies

(1.12)
$$\sum_{\gamma=2}^{p} P_{\alpha\gamma} P_{\gamma\beta} = -\delta_{\alpha\beta}, \quad \alpha, \beta = 2, \dots, p.$$

These results tell us that (F, g, U_1, u^1) defines an almost contact metric structure on M (cf. [3, 5, 6, 12]). Recently Okumura and Vanhecke [12] studied the normal almost contact metric case when $M^{(n+p)/2}(c)$ is a complex projective space $CP^{(n+p)/2}$ and proved

THEOREM O-V. Let M be a CR-submanifold of (n-1) CR-dimension isometrically immersed in $CP^{(n+p)/2}$ and let the normal field N_1 be parallel with respect to the normal connection. If the almost contact metric structure (F, g, U_1, u^1) induced in M is normal, which is equivalent to the condition $A_1F = FA_1$ on M, then $\pi^{-1}(M)$ is locally a product of $M_1 \times M_2$ where M_1 and M_2 belong to some odd-dimensional spheres and A_1 denotes the shape operator corresponding to N_1 (π is the Hopf fibration $S^{n+p+1}(1) \to CP^{(n+p)/2}$).

On the other hand, when $\pi^{-1}(M)$ is (1) an Einstein space or (2) a locally symmetric space, it is well known (cf. [2, 7, 8, 10, 11]) that $\pi^{-1}(M)$ has parallel second fundamental form. Projecting the quantities on $\pi^{-1}(M)$ onto M in $CP^{(n+p)/2}$, we can consider CR-submanifolds of (n-1) CR-dimension with the conditions corresponding to (1) or (2). In this paper we shall study such CR-submanifolds of (n-1) CR-dimension isometrically immersed in $CP^{(n+p)/2}$ by using Theorem O-V.

2. Fundamental equations for CR-submanifolds of (n-1) CR-dimension

We first let M be as in section 1 and use the same notations as shown in that section. We denote by $\overline{\nabla}$ and ∇ the Levi-Civita connection on $M^{(n+p)/2}(c)$ and M, respectively. Then the Gauss and Weingarten equations are given by

$$(2.1) \overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

(2.2)
$$\overline{\nabla}_X N_{\alpha} = -A_{\alpha} X + D_X N_{\alpha}, \quad \alpha = 1, \dots, p$$

268 W.-H. Sohn

for any tangent vector fields X, Y to M. Here D denotes the normal connection induced from $\overline{\nabla}$ in the normal bundle TM^{\perp} of M, and h and A_{α} the second fundamental form and the shape operator corresponding to N_{α} , respectively. It is clear that h and A_{α} are related by

$$h(X,Y) = \sum_{\alpha=1}^{p} g(A_{\alpha}X,Y)N_{\alpha}.$$

Especially we put

(2.3)
$$D_X N_{\alpha} = \sum_{\beta=1}^p s_{\alpha\beta}(X) N_{\beta}.$$

Then $(s_{\alpha\beta})$ is the skew-symmetric matrix of connection forms of D. Now, by using (2.1)-(2.3) and taking account of the Kähler condition $\overline{\nabla}J=0$, we differentiate (1.2) and (1.3) covariantly and compare the tangential and normal parts. Then we can easily find that

$$(2.4) (\nabla_X F)Y = u^1(Y)A_1X - g(A_1Y, X)U_1,$$

$$(2.5) \qquad (\nabla_X u^1)(Y) = g(FA_1 X, Y),$$

$$\nabla_X U_1 = F A_1 X,$$

(2.7)
$$g(A_{\alpha}U_1, X) = -\sum_{\beta=2}^{p} s_{1\beta}(X) P_{\beta\alpha}, \quad \alpha = 2, \dots, p$$

for any X, Y tangent to M.

In the rest of this paper we suppose that the normal field N_1 is parallel with respect to the normal connection D. Hence (2.3) gives

$$(2.8) s_{1\alpha} = 0, \quad \alpha = 2, \dots, p,$$

which together with (2.7) yields

$$(2.9) A_{\alpha}U_1=0, \quad \alpha=2,\ldots,p.$$

On the other hand the ambient manifold $M^{(n+p)/2}(c)$ is of constant holomorphic sectional curvature c and consequently its Riemannian curvature tensor \overline{R} satisfies

$$\begin{split} \overline{R}(\overline{X},\overline{Y})\overline{Z} &= \frac{c}{4}\{\overline{g}(\overline{Y},\overline{Z})\overline{X} - \overline{g}(\overline{X},\overline{Z})\overline{Y} + \overline{g}(J\overline{Y},\overline{Z})J\overline{X} \\ &- \overline{g}(J\overline{X},\overline{Z})J\overline{Y} - 2\overline{g}(J\overline{X},\overline{Y})J\overline{Z}\} \end{split}$$

for any $\overline{X}, \overline{Y}, \overline{Z}$ tangent to $M^{(n+p)/2}(c)$ (cf. [15,16]). So, the equations of Gauss, Codazzi and Ricci imply

(2.10)
$$R(X,Y)Z = \frac{c}{4} \{ g(Y,Z)X - g(X,Z)Y + g(FY,Z)FX - g(FX,Z)FY - 2g(FX,Y)FZ \} + \sum_{\alpha} \{ g(A_{\alpha}Y,Z)A_{\alpha}X - g(A_{\alpha}X,Z)A_{\alpha}Y \},$$

(2.11)
$$(\nabla_X A_1)Y - (\nabla_Y A_1)X$$

$$= \frac{c}{4} \{ g(X, U_1)FY - g(Y, U_1)FX - 2g(FX, Y)U_1 \},$$

(2.12)
$$[A_1, A_{\alpha}] = 0, \quad \alpha = 2, \dots, p$$

for any X, Y, Z tangent to M with the aid of (2.8), where R denotes the Riemannian curvature tensor of M.

3. Fibrations and immersions

In this section n-dimensional CR-submanifolds of (p-1) CR-dimension isometrically immersed in $CP^{(n+p)/2}$ only will be considered. Moreover we shall use the assumption and the notations as in section 2.

Let $S^{n+p+1}(a)$ be the hypersphere of radius a(>0) in $C^{(n+p+2)/2}$ the complex space of complex dimension (n+p+2)/2, which is identified with the Euclidean (n+p+2)-space \mathbb{R}^{n+p+2} . The unit sphere $S^{n+p+1}(1)$ will be briefly denoted by S^{n+p+1} . Let $\widetilde{\pi}: S^{n+p+1} \to CP^{(n+p)/2}$ be the natural projection of S^{n+p+1} onto $CP^{(n+p)/2}$ defined by the Hopf-fibration $S^1 \to S^{n+p+1} \to CP^{(n+p)/2}$. As is well known (cf. [3, 5, 12, 14, 15]), S^{n+p+1} admits a Sasakian structure $\widetilde{\xi}$ and each fibre $\widetilde{\pi}^{-1}(x)$ of x in $CP^{(n+p)/2}$ is a maximal integral submanifold of the distribution spanned by $\widetilde{\xi}$. Thus the base space $CP^{(n+p)/2}$ admits the induced Kähler structure of constant holomorphic sectional curvature 4 (cf. [3, 5, 12, 14, 15]). Moreover we have a fibration $\pi: \pi^{-1}(M) \to M$ which is compatible with the Hopf-fibration π . More precisely speaking $\pi: \pi^{-1}(M) \to M$ is a fibration with totally geodesic fibers such that the following diagram is commutative:

$$\pi^{-1}(M) \xrightarrow{i'} S^{n+p+1}$$

$$\pi \downarrow \qquad \qquad \downarrow \widetilde{\pi}$$

$$M \xrightarrow{i} CP^{(n+p)/4}$$

270 W.-H. Sohn

where $i':\pi^{-1}(M)\to S^{n+p+1}$ and $i:M\to CP^{(n+p)/2}$ are isometric immersions.

Now, let ξ be the unit vector fields tangent to the fibers of $\pi^{-1}(M)$ such that $i'_*\xi=\widetilde{\xi}$. (In what follows we shall delete the i' and i'_* in our notation.) Furthermore we denote by X^* the horizontal lift of a vector field X tangent to M. Then the horizontal lifts N^*_{α} ($\alpha=1,\ldots,p$) of the normal vectors N_{α} to M form an orthonormal basis of normal vectors to $\pi^{-1}(M)$ in S^{n+p+1} . Let A'_{α} and $s'_{\alpha\beta}$ be the corresponding shape operators and normal connection forms, respectively. Then, as shown in [3, 4, 5, 12, 13, 14, 15], the fundamental equations for the submersion π are given by

$$(3.1) '\nabla_{X^*}Y^* = (\nabla_X Y)^* + g'((FX)^*, Y^*)\xi,$$

(3.2)
$$'\nabla_{X^*}\xi = '\nabla_{\xi}X^* = -(FX)^*,$$

where g' denotes the Riemannian metric of $\pi^{-1}(M)$ induced from \widetilde{g} that of S^{n+p+1} and $'\nabla$ the Levi-Civita connection with respect to g'. The similar equations are valid for the submersion $\widetilde{\pi}$ by replacing F (resp. ξ) with J (resp. $\widetilde{\xi}$) respectively. We denote by $\widetilde{\nabla}$ and $'\nabla^{\perp}$ the Levi-Civita connection for \widetilde{g} and the normal connection of $\pi^{-1}(M)$ induced from $\widetilde{\nabla}$, respectively. Since the diagram is commutative, $\widetilde{\nabla}_{X^*}N_{\alpha}^*$ implies

$$'\nabla_{X^*}^{\perp} N_{\alpha}^* - A_{\alpha}' X^* = (\overline{\nabla}_X N_{\alpha})^* + \widetilde{g}((FX)^*, N_{\alpha}^*) \widetilde{\xi}
= -(A_{\alpha}X)^* + g(U_{\alpha}, X)^* \xi + (\nabla_X^{\perp} N_{\alpha})^*$$

because of (2.2), (2.5) and (3.1), from which, comparing the tangental and normal parts, we have

(3.3)
$$A'_{\alpha}X^* = (A_{\alpha}X)^* - g(U_{\alpha}, X)^*\xi,$$

$$(3.4) '\nabla_{X^*}^{\perp} N_{\alpha}^* = (\nabla_X^{\perp} N_{\alpha})^*.$$

Next, calculating $\widetilde{\nabla}_{\xi}N_{\alpha}^{*}$ and using (2.2), (2.5) and (3.2), we have

$$\nabla^{\perp}_{\xi}N_{\alpha}^* - A_{\alpha}'\xi = -(FN_{\alpha})^* = U_{\alpha}^* - (PN_{\alpha})^*,$$

which yields

$$(3.5) A_{\alpha}'\xi = -U_{\alpha}^*,$$

$$(3.6) '\nabla_{\xi}^{\perp} N_{\alpha}^* = -(PN_{\alpha})^*.$$

Hence (3.3) and (3.5) with $\alpha = 1$ and (3.6) imply

(3.7)
$$A_1'X^* = (A_1X)^* - g(U,X)^*\xi,$$

$$(3.8) A_1'\xi = -U^*,$$

$$(3.9) s'_{\alpha\beta}(X^*) = s_{\alpha\beta}(X)^*, s'_{\alpha\beta}(\xi) = -P_{\alpha\beta}.$$

First of all we recall the co-Gauss equations for the submersion π (cf. [4, 13, 14, 15]). Taking account of (3.1) and (3.2), we have

$$(3.10) (\nabla_{X^*}'\nabla_{Y^*}Z^* = (\nabla_X\nabla_YZ)^* + \{g'((FX)^*, (\nabla_YZ)^*) + g'((F\nabla_XY)^*, Z^*) + g'((\nabla_XF)Y)^*, Z^*\} + g'((FY)^*, (\nabla_XZ)^*)\}\xi - g'((FY)^*, Z^*)(FX)^*,$$

$$(3.11) [X^*, Y^*] = [X, Y]^* + 2g'((FX)^*, Y^*)\xi, [X^*, \xi] = 0.$$

Using these equations and taking account of (2.4) and (2.10) with c=4, we can easily see that

$$(3.12)$$

$${}'R(X^*,Y^*)Z^* = g(Y,Z)^*X^* - g(X,Z)^*Y^* + \sum_{\alpha} \{g(A_{\alpha}Y,Z)^*(A_{\alpha}X)^* - g(A_{\alpha}X,Z)^*(A_{\alpha}Y)^*\} + g'(\{u(Y)A_1X - u(X)A_1Y\}^*,Z^*)\xi,$$

where 'R denotes the Riemannian curvature tensor of $\pi^{-1}(M)$. Making also use of (3.1) and (3.2), we have

$$\begin{split} & {}'\nabla_{X^*}{}'\nabla_{Y^*}\xi = -\{(\nabla_X F)Y + F(\nabla_X Y)\}^* - g'((FX)^*, (FY)^*)\xi, \\ & {}'\nabla_{\xi'}\nabla_{Y^*}X^* = -(F\nabla_Y X)^* - \{g(F^2Y, X)^* + g(FY, FX)^*\}\xi, \\ & {}'\nabla_{Y^*}{}'\nabla_{\xi}X^* = -\{(\nabla_Y F)X + F(\nabla_Y X)\}^* - g(FY, FX)^*\xi, \\ & {}'\nabla_{\xi'}\nabla_{X^*}\xi = \{-X + u(X)U\}^*, \end{split}$$

from which, using (1.8), (2.4), (3.11) and the fibre being totally geodesic, we can easily obtain

$$(3.13) 'R(X^*, Y^*)\xi = -\{u(Y)A_1X - u(X)A_1Y\}^*,$$

(3.14)
$$'R(Y^*,\xi)X^* = -\{u(X)A_1Y\}^*$$
$$-\{g(Y,X)^* - u(Y)^*g(U,X)^*\}\xi,$$

(3.15)
$$'R(\xi, X^*)\xi = \{-X + u(X)U\}^*.$$

Putting Z = U in (3.12) and using (2.9), we have

$$'R(X^*, Y^*)U^* = u(Y)^*X^* - u(X)^*Y^*$$

$$+ g(A_1Y, U)^*(A_1X)^* - g(A_1X, U)^*(A_1Y)^*$$

$$+ g(u(Y)A_1X - u(X)A_1Y, U)^*\xi,$$

from which, differentiating covariantly in the horizontal direction Z^* and using (3.1), (3.2) and (3.16), we find

$$('\nabla_{Z^*}'R)(X^*, Y^*)U^* + 'R(X^*, Y^*)(FA_1Z)^*$$

$$+ g(FZ, X)^*(A_1Y)^* - g(FZ, Y)^*(A_1X)^*$$

$$= g(FA_1Z, Y)^*X^* - g(FA_1Z, X)^*Y^*$$

$$+ \{g((\nabla_Z A_1)Y, U)^* + g(A_1Y, FA_1Z)^*\}(A_1X)^*$$

$$- \{g((\nabla_Z A_1)X, U)^* + g(A_1X, FA_1Z)^*\}(A_1Y)^*$$

$$+ g(A_1Y, U)^*\{(\nabla_Z A_1)X\}^* - g(A_1X, U)^*\{(\nabla_Z A_1)Y\}^*$$

$$- g(u(Y)A_1X - u(X)A_1Y, U)^*(FZ)^*$$

$$+ \{u(Y)^*g(FZ, X)^* - u(X)^*g(FZ, Y)^*$$

$$+ u(A_1Y)^*g(A_1FZ - FA_1Z, X)^*$$

$$- u(A_1X)^*g(A_1FZ - FA_1Z, Y)^*$$

$$+ u(Y)^*g(\nabla_Z A_1)X, U)^* - u(X)^*g(\nabla_Z A_1)Y, U)^*$$

$$+ g(u(Y)A_1X - u(X)A_1Y, FA_1Z)^*\} \mathcal{E}.$$

Differentiating (3.13)-(3.15) covariantly in the horizontal direction Z^* respectively and using (3.1), (3.2) and (3.13)-(3.15) themselves, we have

$$(7\nabla_{Z^{*}}R)(X^{*},Y^{*})\xi + g(FZ,X)^{*}\{-Y + u(Y)U\}^{*} + g(FZ,Y)^{*}\{-X + u(X)U\}^{*} - R(X^{*},Y^{*})(FZ)^{*} = -\{g(FA_{1}Z,Y)A_{1}X - g(FA_{1}Z,X)A_{1}Y + u(Y)(\nabla_{Z}A_{1})X - u(X)(\nabla_{Z}A_{1})Y\}^{*} - g(FZ,u(Y)A_{1}X - u(X)A_{1}Y)^{*}\xi,$$

$$(3.19) ('\nabla_{Z^*}'R)(Y^*,\xi)X^* - 'R(Y^*,(FZ)^*)X^* + g(FZ,X)^*\{Y - u(Y)U\}^*$$

$$= -\{g(FA_1Z,X)A_1Y + u(X)(\nabla_ZA_1)Y\}^* + \{g(Y,X) - u(Y)u(X)\}^*(FZ)^* + \{g(FA_1Z,Y)u(X) + g(FA_1Z,X)u(Y) - g(FZ,A_1Y)u(X)\}^*\xi,$$

(3.20)
$$(\nabla_{Z^*}'R)(\xi, X^*)\xi$$

$$= \{g(FA_1Z, X)U + u(X)(FA_1Z - A_1FZ)\}^*.$$

4. Main results

Let M be as in section 2 and use the same notations as shown in that section. We assume that $(\nabla_{Z^*}'R)(Y^*,\xi)X^*=0$. Then (3.19) implies

$$(4.1) - {}'R(Y^*, (FZ)^*)X^* + g(FZ, X)^* \{Y - u(Y)U\}^*$$

$$= - \{g(FA_1Z, X)A_1Y + u(X)(\nabla_Z A_1)Y\}^*$$

$$+ \{g(Y, X) - u(Y)u(X)\}^* (FZ)^* + \{g(FA_1Z, Y)u(X)\}^*$$

$$+ g(FA_1Z, X)u(Y) - g(FZ, A_1Y)u(X)\}^* \xi.$$

Taking the vertical part of (4.1) with X = U and using (1.6), (1.9) and (3.16), we can easily obtain

$$u(Y)g(A_1FZ, U) = -g(A_1FZ, Y) + g(FA_1Z, Y),$$

from which, putting Y = U and using (1.6), it follows that

$$q(A_1FZ,U)=0$$

and consequently

$$A_1F - FA_1 = 0.$$

Combining this equation and Theorem O-V, we have

THEOREM 1. Let M be an n-dimensional CR-submanifold of (n-1) CR-dimension isometrically immersed in a complex projective space $CP^{(n+p)/2}$ and let the normal field N_1 be parallel with respect to the normal connection. If $(\nabla_{Z^*}'R)(Y^*,\xi)X^*=0$ for any vector fields Z,Y,X on M, then $\pi^{-1}(M)$ is locally a product of $M_1 \times M_2$ where M_1 and M_2 belong to some odd-dimensional spheres.

COROLLARY. Let M be an n-dimensional CR-submanifold of (n-1) CR-dimension isometrically immersed in a complex projective space $CP^{(n+p)/2}$ and let the normal field N_1 be parallel with respect to the normal connection. If $\nabla_{Z^{\bullet}}'R = 0$ for any vector field Z on M, then $\pi^{-1}(M)$ is locally a product of $M_1 \times M_2$ where M_1 and M_2 belong to some odd-dimensional spheres.

We next assume that $\nabla_{Z^*}'R(\xi, X^*)\xi = 0$ identically on $\pi^{-1}(M)$. Then (3.20) gives

$$g(FA_1Z, X)U + u(X)(FA_1Z - A_1FZ) = 0,$$

from which, putting X = U and using (1.6) and (1.9), we have

$$FA_1 - A_1F = 0.$$

Combining this equation and Theorem O-V, we have

THEOREM 2. Let M be an n-dimensional CR-submanifold of (n-1) CR-dimension isometrically immersed in a complex projective space $CP^{(n+p)/2}$ and let the normal field N_1 be parallel with respect to the normal connection. If $\nabla_{Z^*}'R$ $(\xi, X^*)\xi = 0$ for any vector fields Z, X on M, then $\pi^{-1}(M)$ is locally a product of $M_1 \times M_2$ where M_1 and M_2 belong to some odd-dimensional spheres.

References

- [1] A. Bejancu, CR-submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [2] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-498.
- [3] Y.-W. Choe and M. Okumura, Scalar curvature of a certain CR-submanifold of a complex projective space, Arch. Math. 68 (1997), 340-346.
- [4] R. H. Escobales, Jr., Riemannian submersions with totally geodesic fibres, J. Diff. Geom. 10 (1975), 253-276.
- [5] J.-H. Kwon and J. S. Pak, CR-submanifolds of (n-1) CR-dimension in a complex projective space, Saitama Math. J. 15 (1997), 55-65.
- [6] J.-H. Kwon and J. S. Pak, n-dimensional CR-submanifolds of (n-1) CR-dimension immersed in a complex space form, Far East J. of Math. Sci. Special Volume (Part III) (1999), 347-360.
- [7] H. B. Lawson, Jr., Rigidity theorems in rank-1 symmetric spaces, J. Differential Geom. 4 (1970), 349-357.
- [8] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
- [9] R. Nirenberg and R. O. Wells Jr., Approximation theorems on differential submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1965), 15-35.
- [10] M. Okumura, Real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- [11] M. Okumura, Compact real hypersurfaces of a complex projective space, J. Differential Geom. 12 (1977), 595-598.
- [12] M. Okumura and L. Vanhecke, n-dimensional real submanifolds with (n-1)-dimensional maximal holomorphic tangent subspace in complex projective spaces, Rendiconti del Circolo Mat. di. Palermo **XLIII** (1994), 233–249.
- [13] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
- [14] W.-H. Sohn, Some curvature conditions of n-dimensional CR-submanifolds of (n-1) CR-dimension in a complex projective space, preprint.
- [15] K. Yano and S. Ishihara, Fibred space with invariant Riemannian metric, Kodai Math. Sem. Rep. 19 (1967), 317–360.
- [16] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, Boston, Basel, Stuttgart, 1983.

Department of Mathematics Pusan University of Foreign Studies Pusan 608-738, Korea *E-mail*: whson@taejo.pufs.ac.kr