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SOME CURVATURE CONDITIONS OF
n-DIMENSIONAL CR-SUBMANIFOLDS
OF (n - 1) CR-DIMENSION IN A
COMPLEX PROJECTIVE SPACE II

Won-Ho SoHN

ABsTRACT. In the previous paper we studied n-dimensional CA-
submanifolds of (n — 1) CR-dimension immersed in a complex pro-
jective space CP("+P)/2_ and especially determined such subman-
ifolds under curvature conditions related to vertical direction. In
the present article we determine such submanifolds under curvature
conditions related to horizontal direction.

1. Introduction

Let M be an n-dimensional C R-submanifold of {(n—1) CR-dimension
isometrically immersed in a complex space form M (n+2)/2(¢). Denoting
by (J,3) the Kihlerian structure of M{"*tP)/2(c}, it follows by definition
(cf. [1, 3, 5, 6, 9, 12, 14, 16]) that the maximal J-invariant subspace

Dy =T, MNJIJT,M

of the tangent space T, M of M at each point x in M has constant
dimension (n — 1). So there exists a unit vector field {/; tangent to M
such that

DL = Span{U,}, Yre M,

where DL denotes the subspace of T, M complementary orthogonal to
D.. Moreover, the vector field N; defined by

(1.1) N1 = JUl
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is normal to M and satisfies
JTM ¢ TM @ Span{N,}.
Hence we have, for any tangent vector field X and for a local orthonormal

basis { N1, Na ta=2,... » of normal vectors to M, the following decompo-
sition in tangential and normal components :

(1.2) JX = FX + u!(X)Ny,
(1.3) JNy=-Ua+PNa, a=1,...,p.
Since the structure (J,7) is Hermitian and J%2 = —I, we can easily see

from (1.2) and (1.3) that ¥ and P are skew-symmetric linear endomor-
phisms acting on T, M and T, M*, respectively and that

: g(FU,, X) = —u!(X)G(N1, PN,),
(1.5) g(Ua,Ug) = 0o — _Ej(PNa,PNﬁ),

where T, M ' denotes the normal space of M at = and g the metric on
M induced from §. Furthermore we also have

(1.6) 3{Ua, X) = u' (X)614

and consequently

(1.7) gU, X) =u'(X), Ua=0, a=2,...,p.

Next, applying J to (1.2) and using (1.3) and (1.7}, we have
(1.8) F2X = - X +u}{(X)U1, u'(X)PN,=—u!(FX)Ny,
from which, taking account of the skew-symmetry of P and (1.4),
(1.9) v (FX)=0, FU =0, PN;=0.

Thus (1.3) may be written in the form

(1.10) JNy =-Uy, JN,=PN, a=2,...,p.
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Moreover we may put

P
(1.11) PNo=Y PopNp, a=2,..,p,
A=2

where (P.g) is a skew-symmetric matrix which satisfies
P
(1.12) Y PuyPg=—bdap, @,B8=2,...,p.
=2

These results tell us that (F, g, U;,u!)} defines an almost contact metric
structure on M (cf. [3, 5, 6, 12]). Recently Okumura and Vanhecke [12]
studied the normal almost contact metric case when M2}/ 2(¢) is a
complex projective space CP("tP)/2 and proved

THEOREM O-V. Let M be a CR-submanifold of (n—1) C R-dimension
isometrically immersed in CP{"1P)/2 and let the normal field Ny be par-
allel with respect to the normal connection. If the almost contact metric
structure (F, g, Uy, u') induced in M is normal, which is equivalent to
the condition A|F = FA, on M, then m~*(M) is locally a product of
My x M> where M, and M> belong to some odd-dimensional spheres
and A; denotes the shape operator corresponding to Ny (w is the Hopf
fibration §7tPH1(1) — Cp(te)/2),

On the other hand, when #=!(M) is (1) an Einstein space or (2)
a locally symmetric space, it is well known (cf. {2, 7, 8, 10, 11]) that
7~1(M) has parallel second fundamental form. Projecting the quantities
on 7~1(M) onto M in CP"tP)/2 we can consider C R-submanifolds of
(n—1) CR-dimension with the conditions corresponding to (1) or (2). In
this paper we shall study such C' R-submanifolds of (n—1) C R-dimension
isometrically immersed in ¢'P("*t?)/2 by using Theorem O-V,

2. Fundamental equations for C R-submanifolds of (n — 1)
(' R-dimension

We first let M be as in section 1 and use the same notations as shown
in that section. We denote by V and V the Levi-Civita connection
on M("tP)/2(¢) and M, respectively. Then the Gauss and Weingarten
equations are given by

(2.1) VxY = VxY + h(X,Y),
(2.2) VxNa=—-AX+DxN., a=1,...,p
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for any tangent vector fields X,Y to M. Here D denotes the normal
connection induced from V in the normal bundle TM< of M, and h and
A, the second fundamental form and the shape operator corresponding
to N,, respectively. It is clear that h and A, are related by

h(X,Y) = zp: 0(AaX,Y)N,.

a=1

Especially we put

14
(2.3) DxNa =Y sap(X)Ng.
s=1

Then (s,5) is the skew-symmetric matrix of connection forms of D.
Now, by using (2.1)-(2.3) and taking account of the Kahler condition
V.J = 0, we differentiate (1.2) and (1.3) covariantly and compare the
tangential and normal parts. Then we can easily find that

(2.4) (VxF)Y = u}(Y)A1 X — g(A1Y, X)U,
(2.5) (Vxul)(Y) = g(FALX,Y),
(2.6) VxU = FA X,
P
(2.7) 9(AalUy, X) ==Y 515(X)Ppa; a=2,...,p
p=2

for any X, Y tangent to M.
In the rest of this paper we suppose that the normal field Ny is parallel
with respect to the normal connection D. Hence (2.3) gives

(2.8) s1a =0, a=2,...,p,
which together with (2.7) yields
(2.9) AU =0, a=2,...,p

On the other hand the ambient manifold M{("*7}/2(¢) is of constant
holomorphic sectional curvature ¢ and consequently its Riemannian cur-
vature tensor R satisfies

R(X,V)Z = g{g(?, 72X —5(X,2)Y +3(JY, 2)JX

—g(JX,2)JY - 25(JX,Y)JZ}
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for any X, Y, Z tangent to M+ P)/2(¢) (cf. [15,16]). So, the equations
of Gauss, Codazzi and Ricci imply

(2.10) mxym:gﬁxmx—mXangwxzwx
— g(FX, Z)FY — 29(FX,Y)FZ}
+ 3 {9(AaY, Z)AaX — g(AuX, Z)AaY},

(2.11)  (VxA)Y — (VyA41)X
= ${g(X, UFY — (¥, U0)FX - 20(FX,Y)U1},

(2.12) (A1, As] =0, a=2,...,p

for any X,Y, Z tangent to M with the aid of (2.8), where R denotes the
Riemannian curvature tensor of M.

3. Fibrations and immersions

In this section n-dimensional € R-submanifolds of (p—1) C'R-dimension
isometrically immersed in CP(+?)/2 oply will be considered. Moreover
we shall use the assumption and the notations as in section 2.

Let S™*P+1(a) be the hypersphere of radius a(> 0) in C{*+P+2)/2 the
complex space of complex dimension (n + p + 2)/2, which is identified
with the Buclidean (n+ p+2)-space R™ F?+2. The unit sphere S™+P+1(1)
will be briefly denoted by SPtPTY. Let 7 : §7tPtl — CP+r)/2 be
the natural projection of $™1?t! onto CP(*tP)/2 defined by the Hopf-
fibration §1 — §nvrtl o, OP(RTPY2Z Agis well known (cf. (3, 5, 12,
14, 15]), S**tP*1 admits a Sasakian structure ¢ and each fibre 7! (x)
of z in CP"*+P)/2 i5 3 maximal integral submanifold of the distribution
spanned by E Thus the base space CP™tP)/2 gdmits the induced Kahler
structure of constant holomorphic sectional curvature 4 {cf. [3, 5, 12, 14,
15]). Moreover we have a fibration 7 : 771 (M) — M which is compatible
with the Hopf-fibration w. More precisely speaking 7 : 771 (M) — M is
a fibration with totally geodesic fibers such that the following diagram
is commutative :

rl (M) ——  grtet!

" |7

M i, opnte)/i
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where ¢ : 77Y(M) — §™PH and i : M — CP®P)/2 are isometric
immersions.

Now, let £ be the unit vector fields tangent to the fibers of 7~ (M)
such that i’¢ = £. (In what follows we shall delete the i’ and 7, in our
notation.) Furthermore we denote by X* the horizontal lift of a vector
field X tangent to M. Then the horizontal lifts N3 (a = 1,...,p) of the
normal vectors N, to M form an orthonormal basis of normal vectors
to 77 1(M) in S"TPTL Let A! and Sas be the corresponding shape
operators and normal connection forms, respectively. Then, as shown in
(3, 4, 5, 12, 13, 14, 15|, the fundamental equations for the submersion =
are given by

(3.1) Vx Y7 = (VxY) + ¢ (FX)5Y7),
(32) ’meg = fva* = —(F.X)*,
where ¢’ denotes the Riemannian metric of 7~!(M) induced from § that

of §"*7*1 and 'V the Levi-Civita connection with respect to ¢’. The
similar equations are valid for the submersion 7 by replacing F (resp. £)

e

with J (resp. &) respectively. We denote by V and 'V the Levi-Civita
connection for g and the normal connection of #~!(M) induced from V,

respectively. Since the diagram is commutative, V x. N2 implies
Ve Ng = AL X" = (VxNo)* + §((FX)*, N3)E
= —(AaX) + 9(Us, XY &+ (Vi Vo)

because of (2.2), (2.5) and (3.1}, from which, comparing the tangental
and normal parts, we have

(3.3) ALX™ = (AaX)" — g(Uy, X)*E,
(3.4) 'V NI = (VEN,)"

Next, calculating e’EN; and using (2.2), (2.5) and (3.2), we have
'VEN; — ALl = —(FNa)" = Us — (PN,
which yields

(3.5) AL =-Ug,
(3.6) 'VEN, = —(PN,)".
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Hence (3.3) and (3.5) with a =1 and (3.6} imply

(37) A;.X* = (AlX)* - g(UaX)*gv
(33) e = v,
(3.9) 8np(X") = sap(X)",  845(€) = —Pag.

First of all we recall the co-Gauss equations for the submersion 7 (cf.
(4, 13, 14, 15]). Taking account of (3.1) and (3.2}, we have

'Vx-'Vy-Z* =(VxVyZ) + {g(FX)",(VyZ)")
(3.10) +g(FVxY)Y,Z7) + ¢ (VxF)Y)", Z7)
+ g (FY)*, (VxZ)" )} — ¢ ((FY)", Z7)(FX)",

(3.11) [X* Y] = [X,Y]" + 20 (FX)", Y7)¢,  [X7, € =0

Using these equations and taking account of (2.4) and (2.10} with ¢ = 4,
we can easily see that

(3.12)
IR(X*,Y*)Z* = oY, Z)* X" - g(X, Z)*Y*

+3 {g(AaY, Z)* (A X)* - 9(AaX, Z)*(AaY)'}
+ ' ({u(V)A:1 X — w(X)A Y}, 270,

where 'R denotes the Riemannian curvature tensor of #~1(M). Making
also use of (3.1) and (3.2), we have

'Vx'Vy-£ = —{(VxF)Y + F(VxY)}" — ¢'(FX)", (FY)"),
Gy X* = —(FVy X)" — {g(F?Y, X)" + g(FY, FX)"}¢,
'Vy-'VeX* = —{(VyF)X + F(Vy X)}" — g(FY, FX)*¢,
'Ve'Vx-€ = {-X +u(X)UY},
from which, using (1.8), (2.4), (3.11) and the fibre being totally geodesic,
we can easily obtain
(3.13) 'R(X*, Y*)E = {uY) A1 X —u(X)A Y},
(3.14) "R(Y*, ) X* = ~ {u(X)A Y}
—{g(¥, X)" — u(Y)"g(U, X)"}¢,
(3.15) 'R(&, X )¢ ={-X +uw(X)U}".
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Putting Z = U in (3.12) and using (2.9), we have
'R(X™, YU =u(Y )" X* —u{X)Y*
(3.16) + g{A Y, Uy (A1 X)" — (A1 X, U (A Y)*
+ g(u(Y) AL X —u(X)A: Y, U)"%,
from which, differentiating covariantly in the horizontal direction Z* and
using (3.1), (3.2) and (3.16), we find
(Vz.'R)(X*, YU +'R(X* Y*)(FA 2)*
+g(FZ, X)) (A Y) - o(FZ, YY) (A1 X)"
=g(FAZ,Y)' X" —g(FALZ, X)*'Y*
+{o((V2A)Y,U)" + g(AY, FALZ) (AL X)"
— {9((V2 A1) X, U)* + g(A1 X, FALZ) N ALY’
+9(AY, Uy {(VzA) X} — (A1 X, U) {(Vz A1)V}
—g(u(Y)A X —uw(X)A, Y, UY (FZ)*
T+ {u(Y) g(FZ, X} - u(X)*g(FZ,Y)
+u(AY)'g(AWFZ - FAZ, X)*
—u(A X) g(A1FZ — FA,Z,Y)*
+u(Y)'g(VzA) X, U)" —u(X)*'g(VzA4)Y,U)*
+ g(u(Y)A1 X —u(X)A )Y, FA1 Z)*}§.

Differentiating (3.13)-(3.15) covariantly in the horizontal direction Z*
respectively and using (3.1), (3.2) and (3.13)-(3.15) themselves, we have

(Vz-'R)(X* Y+ o(FZ, X)*{-Y + u(Y)U}

+g(FZ, YY{=X +u(X)U} ~'R(X*, Y*'WFZ)*
=—{g(FAIZ,Y)A1 X — g(FA1Z, X)A1Y + u(Y)(VzA)X

~u(X)(VzA)Y} —g(FZ,u(Y)A1 X —uw(X)A1Y)7§,

(3.17)

(3.18)

(3.19)
(Vz'R)Y™, X" —'R(Y",(FZ)")X" + g(FZ, X){Y —w(Y)U}*

=—{9(FALZ, X)A1Y + u(X){Vz ALY} + {g(Y, X)
—u(Y(X)}(FZ)" + {g(FA:1 Z,Y)u(X)
+g(FAL1Z, X)u(Y) — g(FZ, A\Y Ju(X)}"E,

(Vz-'R)(§, X")¢

(320) :{g(FAlz,X)U+U(X)(FAIZ_AIFZ)}*
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4. Main results

Let M be as in section 2 and use the same notations as shown in that
section. We assume that ((Vz-'RHY*,£)X* = 0. Then (3.19) implies

—'R(Y* (FZ)")X* 4+ g(FZ, X){Y — w(YYU}"
=—{g(FA1Z, X)A1Y + u(XHVzA)Y}"

+ {g(Y, X) — u(Y)u(X)}(FZ)" + {g(FA1Z, Y }u(X)

+ g(FALZ, X)u(Y) — g(FZ, AiY Ju(X)}€.

Taking the vertical part of (4.1) with X = I/ and using (1.6), (1.9) and
{3.16), we can easily obtain

uw(Y)g(ALFZ,U) = —g(AMFZY) + g(FALZ,Y),
from which, putting Y = U and using (1.6), it follows that
g(AFZ,U)=0

(4.1)

and consequently
AlF - FAl = 0
Combining this equation and Theorem O-V, we have

THEOREM 1. Let M be an n-dimensional C R-submanifold of (n—1)
C R-dimension isometrically immersed in a complex projective space
O pint)/2 and let the normal field N, be parallel with respect to the nor-
mal connection. If (Vz-'R}(Y™*,£)X* = 0 for any vector fields Z,Y, X
on M, then m~' (M) is locally a product of My x M where My and M,
belong to some odd-dimensional spheres.

COROLLARY. Let M be an n-dimensional C R-submanifold of (n —
1} CR-dimension isometrically immersed in a complex projective space
¢ P"tP)/2 and let the normal field Ny be parallel with respect to the
normal connection. If 'Vz.'R = 0 for any vector field Z on M, then
=Y (M) is locally a product of My x My where M and M; belong to
some odd-dimensional spheres.

We next assume that 'Vz.’R)(£, X*)¢ = 0 identically on 7~ (M).
Then (3.20) gives
g(FALZ, XU +u(X(FALZ - AWFZ) =0,
from which, putting X = U/ and using (1.6) and (1.9), we have
FA - A F=0

Combining this equation and Theorem O-V, we have
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THEOREM 2. Let M be an n-dimensional C'R-submanifold of (n —
1) C R-dimension isometrically immersed in a complex projective space
CP+P)/2 and let the normal field Ny be parallel with respect to the
normal connection. If 'V z-'R)(£, X*) = 0 for any vector fields Z, X
on M, then n=Y(M) is locally a product of M| x My where M, and M
belong to some odd-dimensional spheres.
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