ON THE JOINT WEYL AND BROWDER SPECTRA OF HYPONORMAL OPERTORS

  • Lee, Young-Yoon (Department of Mathematics Education, Sangmyung University)
  • Published : 2001.04.01

Abstract

In this paper we study some properties of he joint Weyl and Browder spectra for the slightly larger classes containing doubly commuting n-tuples of hyponormal operators.

References

  1. Integr. Equa. Oper. Th. v.13 On p-hyponormal operators for 0 < p <1 A. Aluthge
  2. Acta Sci. Math. (Szeged) v.53 On the joint Weyl specturm Ⅲ M. Cho
  3. Nihonkai Math. J. v.11 Joint spectra of doubly commuting n-tuples of operators and their Aluthge transforms M. Choi;I. H. Jeon;J. I. Lee
  4. Rev. Roumaine Math. Pures Appl. Joint spectra of n-tuples of generalized Aluthge transformatons M. Cho;U. H. Jeon;I. B. Jung;J. I. Lee;K. Tanahashi
  5. Pittman Res. Notes in Math. Ser. v.192 Applications of several complex variables to multiparameter spectral thiory R. E. Curto;J. B. Conway(ed.);B.B. Morrel(ed.). Ⅱ
  6. Pecific J. Math. v.64 Joint essential spectra A. T. Dash
  7. Spectral decompositions and analytic sheaves J. Eschmeier;M. Putinar
  8. Indiana Univ. Math. J. v.35 The index of an Elementary operator L. A. Fialkow
  9. J. Funct. Analysis v.19 The Taylor spectrum and decomositions S. Frunza
  10. Glasgow Math. J. v.40 On joint essential spectra of doubly commuting n-tuples of p-hyponormal operators I. H. Jeon
  11. Acta Sci. Math. (Szeged) v.59 On the Taylor-Weyl spectrum I. H. Jeon;W. Y. Lee
  12. Comm. Korean Math. Soc. v.11 On the Taylor-Browder spectrum
  13. Bull. Korean Math. Soc. v.37 On joint Weyl and Browder spectra J. C. Kim
  14. Math. Japonica v.50 On Weyl spectrum in several variables M. Putinar
  15. Monatsh. Math. v.84 J. G. Stampfli;B. L. Wadhwa, On dominant operators
  16. J. Oper. Theory 2 Stability of the index of a complex of Banach spaces F.-H. Vasilescu