The 3-D Underwater Object Recognition Using Neural Networks and Ultrasonic Sensor Fabricated with 1-3 Type Piezoelectric Composites

1-3형 압전복합체로 제작한 초음파센서와 신경회로망을 이용한 3차원 수중 물체인식

  • 조현철 (경북전문대 전기전자계열) ;
  • 이기성 (홍익대 공대 전자전기공학부)
  • Published : 2001.07.01

Abstract

In this study, the characteristics of ultrasonic sensor fabricated with PZT-Polymer 1-3 type composites are investigated. The 3-D Underwater object recognition using the self-made ultrasonic sensor and SOFM neural network is presented. The ultrasonic sensor is satisfied with the required condition of commercial ultrasonic sensor in underwater. The 3-D underwater object recognition for the training data and the testing data are 100[100%], respectively. The experimental results have shown that the ultrasonic sensor fabricated with PZT-Polymer 1-3 type composites can be applied for sonar system.

Keywords

1-3 Type piezoelectric composite;SOFM Neural Networks;Neuron space

References

  1. 電子材料工業會 規格 EMAS-6001~7
  2. S. Watanebe and M. Yoneyama, 'An Ultrasonic Robot Eye for Object Identification Using Neural Network,' in Proc. IEEE Ultra. Symp., pp. 1083-1086, 1989 https://doi.org/10.1109/ULTSYM.1989.67156
  3. S. Y. Lynn, R. E. Newnham, K. A. Killer, K. Rittenmyer, A. Safari, and W. A. Schulze, 'Ferroelectric Composites for Hydrophone,' Ferroelectrics, Vol. 38, pp. 955-958. 1982
  4. 조현철, 이기성, 최헌일, 사공건, '1-3형 복합압전체로 제작한 초음파 트랜스듀서와 신경회로망을 이용한 3차원 수중 물체복원', 전기학회논문지, Vol. 48, No. 6, pp. 456-461, 1999
  5. 조현철, 이기성, '1-3형 복합압전체 초음파 센서를 이용한 3차원 수중 물체 인식', 대한전기학회 하계학술대회 논문집, pp. 560-562, 1999
  6. B. Jaffe, W. R. Cook, Jr. and H. Jaffe, 'Piezoelectric Ceramics', Academic Press, London and New York, p135, 1971
  7. 최헌일, 사공건, '사전 분극처리된 유연한 1-3형 세라믹/고분자 복합압전체의 PZT체적비에 따른 전기적 특성', 전기학회논문지, Vol. 42, No. 11, pp. 100-106, 1993
  8. G. Sa-Gong, A. Safari, S. J. Jang and R. E. Newnham, 'Poling Flexible Piezoelectric Composites', Ferroelectric Letter, 5(5), p.131, 1985
  9. D. Specht, 'Probabilistic neural networks and the polynomial adaline as complementary technigues for classification,' IEEE Transactions on Neural Networks, Vol. 1, pp. 111-121, 1990 https://doi.org/10.1109/72.80210
  10. R. E. Newnham, A. Safari, G. Sa-Gong and I. Giniewicz, 'Flexible Composites Piezoelectric Sensors', IEEE Proc., Int'l Ultrason. Symp., p501, 1984
  11. JERRY L. SUTTON, 'Underwater Acoustic Imaging,' Proceedings of the IEEE. Vol. 67, No. 4, pp.229-241, April 1979
  12. R. Gorman and T. Sejnowski, 'Analysis of Hidden Units in a Layered Neywork Trained to Classify Sonar Targets,' Neural Networks, Vol. 1, pp. 75-89, 1988