Effects of Levels of Feed Intake and Inclusion of Corn on Rumen Environment, Nutrient Digestibility, Methane Emission and Energy and Protein Utilization by Goats Fed Alfalfa Pellets

  • Islam, M. (Energy Metabolism Laboratory, National Institute of Animal Industry) ;
  • Abe, H. (Energy Metabolism Laboratory, National Institute of Animal Industry) ;
  • Terada, F. (Energy Metabolism Laboratory, National Institute of Animal Industry) ;
  • Iwasaki, K. (Energy Metabolism Laboratory, National Institute of Animal Industry) ;
  • Tano, R. (Energy Metabolism Laboratory, National Institute of Animal Industry)
  • Received : 1999.08.14
  • Accepted : 1999.12.21
  • Published : 2000.07.01


The effect of high and low level of feed intakes on nutrient digestibility, nutrient losses through methane, energy and protein utilization by goats fed on alfalfa (Medicago sativa L.) pellets based diets was investigated in this study. Twelve castrated Japanese goats were employed in two subsequent digestion and metabolism trials. The goats were divided into three groups, offered three diets. Diet 1 consisted of 100% alfalfa pellet, Diet 2 was 70% alfalfa pellet and 30% corn, and Diet 3 was 40% alfalfa pellet and 60% corn. The two intake levels were high (1.6 times) and low (0.9 times) the maintenance requirement of total digestible nutrients (TON). Rumen ammonia nitrogen ($NH_3$-N) level of Diet 1 was lower (p<0.001) compared to Diets 2 and 3, but the values were always above the critical level (I50 mg/liter), The pH values of rumen liquor ranged from 6.02 to 7.30. Apparent digestibility of nutrient components did not show differences (p>0.05) between the two intake levels but inclusion of corn significantly altered the nutrient digestibility. Diet 3 had highest (p<0.001) dry matter (DM), organic matter (OM), ether extract (EE) and nitrogen fee extract (NFE) digestibility followed by the Diet 2 and Diet 1. The crude protein (CP) digestibility values among the three diets were in a narrow range (70.1 to 70.8%). Crude fiber (CF) digestibility for Diet 3 was slight higher (p>0.05) than that for other two diets. When alfalfa was replaced by corn, there were highly significant (p<0.001) increases in DM, OM, EE and NFE apparent digestibility and a slight increase in the CF digestibility (p>0.05). There were no differences (p>0.05) in energy losses as methane ($CH_4$) and heat production among the diets but energy loss through urine was higher for the Diet 1. The total energy loss as $CH_4$ and heat production were higher for the high intake level but the energy loss as $CH_4$ per gram DM intake were same (0.305 kcal/g) between the high and low intake level. Retained energy (RE) was higher for Diet 3 and Diet 2. Nitrogen (N) losses through feces and urine were higher (p<0.001) for Diet 1. Consequently, N retention was lower (p>0.05) for Diet 1 and higher in Diets 3 and 2. It is concluded that inclusion of corn with alfalfa increased the metabolizable energy (ME) and RE, and retained N through reducing the energy and N losses. The high level of intake reduced the rate of nutrient losses through feces and urine.


Goat;Intake Level;Corn;Alfalfa;Rumen Environment;Methane;Energy Metabolism and Nitrogen Metabolism

Cited by

  1. Effects of dietary cellulase and xylanase addition on digestion, rumen fermentation and methane emission in growing goats vol.69, pp.4, 2015,
  2. Effects of feed restriction and forage:concentrate ratio on digestibility, methane emission, and energy utilization by goats vol.45, pp.12, 2016,
  3. Effects of Total Mixed Rations Containing Treated or Untreated Soybean Meal on the Energy Utilization of Kacang Goats vol.17, pp.11, 2018,