Stand Density Effects on Herbage Yield and Forage Quality of Alfalfa

  • Min, D.H. (Department of Natural Resource Sciences and Landscape Architecture, College of Agriculture and Natural Resources, University of Maryland) ;
  • King, J.R. (Department of Agricultural, Food and Nutritional Science, Faculty of Agriculture, Forestry and Home Economics, Ultiversity of Alberta) ;
  • Kim, D.A. (Department of Animal Science and Technology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, H.W. (Department of Agricultural Science, Korea National Open University)
  • Received : 1999.08.11
  • Accepted : 1999.11.17
  • Published : 2000.07.01


Optimum stand density of alfalfa (Medicago sativa L.) varies with locations and climates. Stand density is one of the factors that determines herbage yield, forage quality and persistence of alfalfa. As establishment costs increase, the question arises whether present population densities are optimum for obtaining maximum herbage yield and forage quality. The objectives of this study were: 1) to determine the optimum plant density for highest herbage yield and forage quality for the dehydrated alfalfa industry under Edmontons climatic conditions in Alberta, Canada; 2) to compare herbage yield and forage quality of the cultivars 'Algonquin' and 'Vernal' grown at a range of stand densities. Alfalfa seedlings of both cultivars were either transplanted at spacings of 6, 10, 15 and 25 cm or direct seeded at the 4.5 cm plant spacings, providing population densities of 494, 278, 100, 45 and $16plants/m^2$. The experimental design was a randomized complete block with a split-plot arrangement having three replicates; the main plots consisted of two alfalfa cultivars Algonquin and Vernal, and the sub-plots were the five population densities. The cultivar Vernal had significantly higher annual yield than did the cultivar Algonquin. There was no significant effect of plant density on herbage yield. There was no difference in crude protein (CP) between the two cultivars. At the first cut, there was a significant quadratic effect of plant density on CP content and the greatest CP occurred at the 100 plants/m2 density. Crude protein was not affected by plant density at the second cut. Acid detergent fiber (ADF) and neutral detergent fiber (NDF) were not affected by plant density. The cultivar Algonquin usually had a lower ADF and NDF than cultivar Vernal. In conclusion, high population densities ($278plants/m^2$ or more) of alfalfa did not improve herbage yield and forage quality compared with low plant population densities ($100plants/m^2$ or less) of alfalfa.


Stand Density;Alfalfa;Herbage Yield;Forage Quality;Vernal;Algonquin