Optimization of Finite Element Retina by GA for Plant Growth Neuro Modeling

  • Murase, H. (Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University)
  • Published : 2000.06.01

Abstract

The development of bio-response feedback control system known as the speaking plant approach has been a challenging task for plant production engineers and scientists. In order to achieve the aim of developing such a bio-response feedback control system, the primary concern should be to develop a practical non-invasive technique for monitoring plant growth. Those who are skilled in raising plants can sense whether their plants are under adequate water conditions or not, for example, by merely observing minor color and tone changes before the plants wilt. Consequently, using machine vision, it may be possible to recognize changes in indices that describe plant conditions based on the appearance of growing plants. The interpretation of image information of plants may be based on image features extracted from the original pictorial image. In this study, the performance of a finite element retina was optimized by a genetic algorithm. The optimized finite element retina was evaluated based on the performance of neural plant growth monitor that requires input data given by the finite element retina.