• Jung, Soon-Mo ;
  • Kim, Byung-Bae
  • Published : 2000.01.01


In the present paper, the classical results of the stability of isometries obtained by some authors will be generalized; More precisely, the stability of isometries on restricted (unbounded or bounded) domains will be investigated.



  1. Bull. Amer. Math. Soc. v.52 Approximate isometries D. G. Bourgin
  2. Trans. Amer. Math. Sco. v.207 Approximate isometries on finite dimensional Banach spaces R. D. Bouegin
  3. Studia Math. v.72 Approximate isometries on bounded sets with an application to measure theory J. W. Fickett
  4. Proc. Amer. Math. Soc. v.89 Stability of isometries on Banach spaces J. Gevirtz
  5. Proc. Nat. Acad. Sci. USA. v.27 On the Stability of the linear functional equation D. H. Hyers
  6. Proc. Amer. Math. Soc. v.124 Almost linearity of ε-bi-Lipschitz maps between real Banach spaces K. -W.;Jun;D.-W. Park
  7. J. Natural Geom. v.3 Properties of isometries Th. M. Rassias;C. S. Sharma
  8. Isometries and approximate isometries Th. M. Rassias
  9. Duke Math. J. v.16 Applroximately isometric and multiplicative trnasformations on continuous fuction rings
  10. Rendiconti Di Mat. Ser. Ⅶ. Roma v.10 Sulle δ-isometrie negli spazi normati F. Skof
  11. Ann. Math. v.48 Approximate isometries of the space of continuous functions
  12. Proc. Amer. Math. Soc. v.2 Approximate isometries in bounded spaces R. L. Swain
  13. Bull. Amer. Math. Soc. v.51 On approximate isometries D. H. Hyers;S. M. Ulam
  14. Trans. Amer. Math. Soc. v.245 Stability of isometries P. M. Gruber