ON THE LANDSBERG SPACES OF DIMENSION TWO WITH A SPECIAL ($\alpha$, $\beta$)-METRIC

  • Park, Hong-Suh ;
  • Lee, Il-Yong
  • Published : 2000.01.01

Abstract

The present paper is devoted to studying the condition that a two-dimensional Finsler space with a special (${\alpha}$, ${\beta}$)-metric be a Landsberg space. It is proved that if a Finsler space with a special (${\alpha}$, ${\beta}$)-metric is a Landsberg space, then it is a Berwald space.

Keywords

References

  1. Foundations of Finsler geometry and special Finsler spaces M. Matsumoto
  2. The theory of sprays and Finsler spaces with applications in physics and biology P. L. Antonelli;R. S. Ingarden;M. Matsumoto
  3. Tensor, N. S. v.55 Projective changes between Finsler spaces with (α,β)-metric S. Bacso;M. Matsumoto
  4. Pan. Math. J. v.9 no.3 Landsberg spaces of dimension two with some (α,β)-metrics H. S. Park;I. Y. Lee
  5. J. Hokkaido Univ. Education v.46 On Finsler spaces with (α,β)-Metric. Regularity, geodesics and main scalars M. Kitayama;M. Azuma;M. Matsumoto
  6. J. Korean Math. Soc. v.10 On Landsberg spaces of two dimensions with (α,β)-metric M. Hashiguchi;S. Hojo;M. Matsumoto
  7. Tensor, N. S. v.57 Landsberg spaces of dimension two with (α,β)-metric
  8. Tensor, N. S. v.56 On a Finsler space with a special (α,β)-metric H. S. Park;E. S. Choi
  9. Contemporary Math. v.196 Remarks on Berwald and Landsberg sapce
  10. Tensor, N. S. v.50 The Berwald connection of a Finsler space with an (α,β)-metric
  11. Publ. Math., Debrecen v.48 Reduction theorems of certain Landsberg spaces to Berwald spaces