• Kang, Seok-Jin ;
  • Lee, Kyu-Hwan
  • Published : 2000.01.01


In this paper, we develop the Grobner-Shirshov basis theory for the representations of associative algebras by introducing the notion of Grobner-Shirshov pairs. Our result can be applied to solve the reduction problem in representation theory and to construct monomial bases of representations of associative algebras. As an illustration, we give an explicit construction of Grobner-Shirshov pairs and monomial bases for finite dimensional irreducible representations of the simple tie algebra sl$_3$. Each of these monomial bases is in 1-1 correspondence with the set of semistandard Young tableaux with a given shape.



  1. M. S. Thesis Grobner-Shirshov bases for Kac-Moody algebras An⑴ E. N. Poroshenko
  2. Ph. D. Thesis AN algorithm for finding a basis for the residue class ring of a zero-dimensional ideal B. Buchberger
  3. J. Algebra v.217 Grobner-Shirshov bases for Lie superalgebras and their universal enveloping algebras L. A. Bokut;S.-J. Kang;K.-H. Lee;P. Malcolmson
  4. Proceedings of ICCAC 97 Grobner-Shirshov bases for exceptional Lie algebras E6-E8
  5. Adv. Math. v.29 The diamond lemma for ring theory G. M. Bergman
  6. J. Algebra v.165 Crystal graphs for representations of the q-analogue of classical Lie algebras M. Kashiwara;T. Nakashima
  7. J. Pure Appl. Algebra. v.133 Grobner-Shirshov bases for exceptional Lie algebras Ⅰ
  8. Infinite dimensional Lie algebras(3th ed.) V. G. Kac
  9. Siberian Math. J. v.3 Some algorithmic problems for Lie algebras A. I. Shirshov
  10. Algebra and Logic. v.15 Imbedding into simple associative algebras L. A. Bokut
  11. Duke Math. J. v.63 On cystal base of q-analogue of universal enveloping algebras M. Kashiwara
  12. Internat. J. Algebra Comput. v.6 Serre relations Grobner-Shirshov bases for simple Lie algebras Ⅰ, Ⅱ L. A. Bokut;A. A. Klein