Hepatic Injury Studied in Two Different Hypoxic Models

저산소 모델에 따른 간장 기능 손상에 관한 연구

  • Published : 2000.06.01


We hypothesized that the extent of hypoxic injury would be involved in reduction of oxygen delivery to the tissue. Livers isolated from 18 hr-fasted rats were subjected to $N_2$-induced hypoxia or low flow hypoxia. Livers were perfused with nitrogen/carbon dioxide gas for 45min or perfused with normoxic Krebs-Henseleit bicarbonate buffer (KHBB) at low flow rates around 1 ml/g liver/min far 45min, which caused cells to become hypoxic because of insufficient delivery of oxygen. When normal flow rates(4 ml/g liver/min) of KHBB (pH 7.4, 37$^{\circ}C$, oxygen/carbon dioxide gas) were restored for 30min reoxygenation injury occurred. Lactate dehydrogenase release gradually increased in $N_2$-induced hypoxia, whereas it rapidly increased in low flow hypoxia. Total glutathione in liver tissue was not changed but oxidized glutathione markedly increased after hypoxia and reoxygenation, expecially in $N_2$-induced hypoxia. Similarly, lipid peroxidation in liver tissue significantly increased after hypoxia and reoxygenation in low flow hypoxia. Hepatic drug metabolizing functions (phase I, II) were suppressed during hypoxia, especially in $N_2$-induced hypoxia but improved by reoxygenation in both models. Our findings suggest that hypoxia results in abnormalities in drug metabolizing function caused by oxidative stress and that this injury is dependent on hypoxic conditions.