Abstract

This paper presents the integrated storage function model (ISFM) to improve the accuracy of the storage function model (SFM) which is widely employed for flood runoff analysis and its forecasting in Korea. In order to achieve this objective, the optimization method is applied for estimation of parameters of the model which dominate the accuracy of the analysis, which is usually taken by empirical formulae, and they are treated as time dependent variables. The fuzzy control technique is used to determine the time variant parameters. In addition, the ISFM can be applied to the combined routing of the watershed and the channel with a residual watershed.

keywords : flood runoff, storage function model, optimization method, fuzzy control, ISFM

요 목

본 논문에서는 홍수유출의 해석·예측을 위한 홍수수치 모형으로서 현재 국내에서 널리 이용되고 있는 저류함수모형을 개선하였다. 유출 해석의 정확성에 가장 큰 영향을 미치는 요인 중 하나인 매개변수 산정에 최적화 기법을 도입하여 기존의 경험식 등에 의한 매개변수 결정의 비객관성을 개선하였으며, 결정된 매개변수들을 시변성으로 취급하고 이의 실시간 자동보정에 페지서어를 사용하여 시간에 따른 유역의 변동 특성에 적합히 대응할 수 있도록 하였다. 또한 홍수유출 해석시 가장 까다로운 문제점 중의 하나인 잔유역 유입량의 처리를 위하여 유역모형과 하도모형을 하나의 단일모형으로 하는 통합저류함수모형을 제안하였다.

핵심용어: 홍수유출, 저류함수모형, 최적화기법, 페지서어, 통합저류함수모형

* 한국대학교 공과대학 도시환경건설공학과군 교수
 Professor, Division of Urban Planning, Environmental and Civil Engineering, Hanyang University, Seoul 133-791, Korea (E-mail: leejk@email.hanyang.ac.kr)

** 한국대학교 대학원 토목공학과 박사과정
 Doctoral Student, Department of Civil Engineering, Hanyang University, Seoul 133 791, Korea
 (E-mail: hskim815@hymail.hanyang.ac.kr)
1. 서 론

우리나라는 지리적, 기후적 특성으로 매년 장마와 태풍 등이 발생하며, 이로 인한 홍수 때문에 염정난 인명 및 재산 피해를 겪고 있다. 홍수로 인한 피해규모는 산업시설과 경제규모가 커지고 생활수준이 향상됨에 따라 더욱 커지는 경향을 보이고 있으며, 최근에는 도시개발 및 하천개수 등으로 인한 도시홍수, 해수의 유 발과 내수원수의 증대 등 그 피해내용도 다양화되고 있다. 홍수로 인한 피해를 줄이기 위해서는 랜 건설이나 하천재앙 축조 등과 같은 구조물에 의한 직접적인 홍수대책 외에 비구조물에 의한 대책의 하나인 홍수예경보의 정확성을 높여서 홍수계절에 미리 대처하는 것이 그 피해를 감감시키는 적절한 방법 중 하나이다.

자류함수모형을 실제 홍수유출량에 적용하는데 있어서 가장 어려운 점은 매개변수를 결정하는 것이다. 현재, 매개변수들은 결정할 수 있는 객관적이고 합리적인 방법이 제시되어 있지 않기 때문에 모형의 매개변수를 결정할 때 경험적을 이용하거나 수문진단의 판단에 의한 보정에 의존하고 있는 실정이다. 또한, 일반적으로 매개변수들은 강수사상별로 다를 뿐 아니라 동일한 강수량에 따라 시간에 따라 변화하는 시변성(time variant)이 특성이 존재하고 있음에도 불구하고 이들 매개변수들은 상수로 취급한 것이 이전의 보고와 다르지 않은 점에서의 방법이 없었기 때문이다. 이런 점을 고려하여, 이것은 현재로서는 시변성 매개변수를 효과적으로 추정하여 적용할 수 있는 적절한 방법이 없었기 때문이라고 볼 수 있다(이규, 1994; 이광재, 1995). 자류함수모형은 유역모형과 하도모형으로 나누어져 있는데, 유역에 대한 자류함수는 경우-유출 차트로부터 쉽게 구할 수 있으나, 하도에서는 유출량에서의 유량을 산출적으로부터의 유출량과 하도 유출량을 얻는데 별로 어려움이 없기 때문에 실제 하도에서 하도자류함수를 정확하게 구할 수 없는 문제점이 있다.

본 연구는 두 부분으로 나누어 본 논문에서는 위에서 지적된 자류함수모형의 여러 문제점을 개선하기 위하여 매개변수의 최적화 및 피지점에 의한 매개변수의 신시간 보정을 통한 모형의 객관성 및 정확성 향상을 도모하고, 유역과 하도에서의 유출 계산을 단일 모형에 의해 수행할 수 있는 통합자료함수모형을 제안하고자 하며, 두 번째 본문에서는 제안된 모형을 실제 유역의 경우-유출상태에 적용하여 모형의 적응성 및 타당성을 검토하고자 한다.

2. 자류함수모형의 검토

2.1 자류함수모형

자류함수모형(storage function model: SFM)은 이승호(1961a, 1961b)에 의해 제안된 홍수유출량으로 산출가 일반에 유역에 적합할 수 개발된 모형이다. 이 방법은 일본에서 많이 사용되고 있으며, 계산정의 간편하고 홍수유출량의 비선형성을 고려할 수 있는 방법이므로 선형모형보다 간편적으로도 알려져 있다.

자류함수모형은 아래와 같이 유역자료함수모형과 하도자료함수모형으로 나눌 수 있다.

2.1.1 유역자료함수모형

유역자료함수모형은 과정방정식을 나타내는 자료함수 모형과 연속방정식으로 구성되어 있다. 유역에서 자료고 s(mm)은 유효유출량과 q(mm/hr)의 지수함수로 표현할 수 있다. 즉,

\[s_i = K_i q_i \] \hspace{1cm} (1)

여기서 \(K \), \(P \)는 유역에 대한 매개변수이다.

유역에 대한 연속방정식은 다음과 같다.

\[r_{ave} - q_i = \frac{ds_i}{dt} \] \hspace{1cm} (2)

여기서 \(r_{ave} \)는 유역평균유량(mm/hr)이다.

유역내의 수위상과 집중이 홍수가 물 때까지 특
같이 유지되다고 가정하여, 유출액에서는 상관없이 대상으로 하여 유출액을 하여 고려하는 유량을 초과하는 유량으로 변환해 계산한다. 따라 서 출수유량 \(O \) (m³/sec)은 전류적으로부터 직접 유출량에 지하유량 \(O_i \) (m³/sec)를 더하여 구한다(건 설공사 연구, 1971; 온건, 1996).

\[
O = \frac{A}{3s} \left(f_1 q_i + (1 - f_1) q_{av} \right) + O_i
\]

여기서 \(A \) (km²)는 유역면적이며, \(q_{av} \) (mm)은 포화점 이후의 경우에 의한 단위유출고이다.

2.1.2 하도저류함수모형

2.1.2.1 단일하도의 경우

단일 하도의 경우 하도구간의 연속방정식은 다음과 같다.

\[
I - O_i = \frac{dS_i}{dt}
\]

여기서 \(I \) (m³/sec)는 하도구간 상류단에서의 유입량이며, \(O_i \) (m³/sec)는 지하개간 \(T_i \)을 고려한 하도구간 하류단에서의 유출량이고 \(S_i \) (m³)는 하도저류량이 다.

하도저류량 \(S_i \)와 하도의 하류단유량 \(O_i \) 간의 관계를 나타내는 저류함수식은 홍수류와 같은 부정류함수일 때 다음 식으로 표시된다.

\[
S_i = K' O_i^P - T_i; O_i
\]

여기서, \(K' \)와 \(P' \)는 하도저류함수의 매개변수이며, \(T_i \)은 하도의 지하개간. 식 (8)의 우변의 복수 항은 하도표류는 부정류의 형중 발생하는 것이다. 실제 하천에는 펴저류의 \(T_i \)의 영향을 포함시켜 새로운 \(K' \)와 \(P' \)를 결정하여 다음 식과 같이 표시하는 양이 많다(전설공사 연구, 1971).

\[
S_i = K' O_i^P
\]

하도구간에 대한 저류함수식 (식 (8))를 구하면 하도의 상류단의 유럽표류계수 \(I(t) \)와 연속방정식 (식 (7))로부터 홍수추적기법에 의하여 하류단의 유출량 \(O_i \)을 구할 수 있다.

2.1.2.2 전유역을 포함한 하도의 홍수추적법

2.1.2.1절에서 설명한 하도의 홍수유출계산은 하도 상류로부터의 유입량만이 있는 경우에 적합한 유출계 산법이다. 그러나 실제 하천의 하도구간에서는 지하 천 등 의 지하유입이 전혀 없는 경우에는 극히 적고 일반적으로는 지하유입을 고려해야 한다. 이러한 지하유입량이 하천의 유량과 같이 관측되고 있다면 문제가 없지만 실제로 하천에 대한 유량관측이 거의 이루어지고 있지 않은 실정이다. 현재의 수문관측 현황을 살펴보면

유출량이 측정되고 있지 않은 건량을 가진 하도가 대부분이다. 따라서 하천의 하도유량추정법을 확립하는 것도 실제 하천의 홍수추적을 위하여 대단히 중요한 과제로 남아있다.

기존의 홍수추적법에서는 지하유입이 없는 하도에 대한 각수추적을 시행할 수 있지만 건량 유입의 관계는 수문관측 현황을 볼때나, 이 때문에 실제 하천에 대한 기존 방법의 적합성이 약화다고 말하기는 어렵다. 현제까지는 지하유입량이 미지인 건량유입을 명확하게 깨달을 방법을 제시하지 못하고 있다.

木村 (1962b)은 건량을 가진 하도의 홍수추적법으로 대표유입에 의한 방법과 건량유입의 경우에 의한 방법을 제안하고 있지만, 이 방법은 여러 가지 가정을 포함하고 있기 때문에 건량유입계의 명확하게 깨달을 수 있 다는 보람이 없다. 또한 경우에 의한 방법 역시 건량의 유역범위가로부터 건량의 유량구를 구해야 하는 문제가 여전히 남아있다.

2.2 메개변수의 결정

저류함수모형의 메개변수로는 지하구간 \(T_i \)과 \(T_i' \), 저류함수의 메개변수 \(K, K', P, P' \), 유적유출물 \(f_i \) 등이 있다. 저류함수모형을 이용하여 유출계산을 시행할 때 가장 중요한 여러 문제는 유역특성에 적합한 메개변수를 어떻게 결정하는가 하는 것이다. 유역과 하 도의 특성을 적절하게 대표할 수 있는 메개변수를 추 정하는 방법이 모형의 적용타당성 및 효율성을 평가할 수 있는 기준이 된다고 볼 수 있다. 하도에서 장수류의 저류함수를 적용할 경우 \(P \)의 값은 적절한 수로 0.6, 삼각형수로 0.8이며, 실제하천의 경우에는 0.5-0.7의 범위를 가한다(木村, 1962a).

메개변수를 결정하는 기존의 방법으로는 경험지식을 이용하는 방법, 도해법에 의한 방법 등이 있으며 최근에는 수학적 모형과 컴퓨터를 이용하는 최적지어의 방법에 의한 방법에 대한 연구가 활발히 진행 중이다. 경계조건의 방법으로 木村은 일부의 하천자료를 이용하여 기존에에 대한 대단히 중요한 과제로 남아있다.
3. 매개변수의 최적화

실제 하천의 유출문제에 적용할 때 앞에서 설명한 경험식이나 도해법에 의한 방법으로 저류함수모형의 매개변수를 결정하여 사용하는데 몇 가지 문제점이 있다. 경험공식을 사용하는 매개변수 결정방법은 모든 하천에 적용할 수 있기 때문에 특정 하천에 대한 특성을 고려할 수 없으며, 이런 공식은 특정 하천에만 적용할 수 있으며, 강우량의 특성에 따라 매개변수의 변동을 고려할 수 없다. 다음으로 도해법에 의한 결정 방법은 K, P, T을 결정하기 위해서 지시시간을 다양하게 가정하는 것이 불가능한 뿐 아니라 많은 시간과 노력이 필요하며, 일차유출 과 f_t과 포화량 R_o을 결정하는 것도 개인적 판단에 따라 객관성과 객관성이 복잡지 않고 실제 강우량의 경우에 우기주변수량과 우기적 산수량량의 관계가 명확하게 적절적으로 나타나지 않는 경우가 많아서 포화량의 위치결정이 쉽지 않다.

3.1 최적매개변수의 결정 방법

저류함수모형의 매개변수를 결정할 때 경험식에 의해서 결정된 매개변수를 강우량에 따라 보정하는 방법과 최적화법으로 직접 매개변수를 결정하는 방법이 있다(이병권, 1995). 전자의 경우 디수동보정기법과 자동보정기법의 두 가지로 구분된다. 수동보정기법은 관측치와 수동측량의 계산결과를 비교하여 주관적으로 판단해야 한다. 따라서 수동측량치는 모형의 특성을 완전히 이해하고 매개변수 보정에 중한할 경향과 판단능력을 갖추고 있어야 한다. 반면에 자동보정기법은 수학적 최적화기법을 이용하여 모형의 매개변수를 결정하는 방법이기 때문에 전문가의 판단을 필요로 하지 않는다. 최근에는 매개변수를 직접 결정하는 방법으로, 수학적 최적화기법을 사용하여 목적함수를 최소 또는 최대화하여 주어진 모형의 매개변수를 결정하는 방법에 대한 연구가 활발하다. 최적화기법은 직접검색법 (direct search method)과 경사법(gradient method)으로 구분할 수 있다. 경사법은 수렴속도가 빨라지지만 한계값에 의해 방향을 막아가는 방법으로 편도함수를 필요로 하므로 수소의 고도에 적용하기 어렵다. 반면에 직접검색법의 수렴속도는 느리지만 편도함수를 필요로 하지 않으므로 수소의 최적화법에 적용된다. 직

직접검색법에는 simplex search법, pattern search법, rotating direction법, Brent법 등이 있다. 최적화법에 대한 상세한 내용은 문헌(Hooke 와 Jeeves, 1961; Rao, 1984; Hendrickson과 Sorooshian, 1988)을 참조할 수 있다.
지가 최소가 되는 값으로 결정하는 방법을 제안하였다. 이 방법은 기존의 도해법에 의한 메개변수 결정법과 유사한 과정을 가지므로 이해하기 쉽고, 수작업이 필요 없이 간단한 전산화 할 수 있으며, 기존의 최적매개변수 결정법과는 달리 결정변수로 \(T_i \)만을 사용하면서도 최 종적으로 \(K \)와 \(P \)의 최적치를 구할 수 있다는 점이 특 징이다.

3.2 Brent법에 의한 메개변수의 최적화

3.2.1 Brent법

본 연구에서는 최적화기법으로 Brent법을 사용한다. 이 방법은 미분함수가 필요 없으며 계산 알고리즘이 간단하고 수렴속도가 빠른 장점을 가지고 있다. Brent 법은 그림 1과 같은 탐색과정을 가진다. 그림 1에서 초기값으로 1번, 2번, 3번을 선택하면 포물선 (a)를 이루게 되며, 이 포물선상의 최대점은 4번의 점과의 위치는 간단한 수식으로 계산된다. 다음에 1번, 2번, 4번을 이용하여 앞의 과정을 반복하면 다음 최대점이 5번 가 결정되고 이러한 과정을 반복하면 출수오차범위 내에서 목적함수가 최대가 되는 점의 위치를 쉽게 탐색 할 수 있다.

3.2.2 \(K, P, T_i \) 의 최적화

지금까지 저류함수법의 최적매개변수를 결정할 때 저류함수의 메개변수 \(K, P, T_i \)을 각각 독립변수로 취급하거나, 혹은 \(P \)를 일정한 값으로 가정하고 나머지 메개변수를 최적화하였다. 그러나 도해법에 의한 메개변수 산정의 알고리즘에서는 유출고와 유역저류기간의 관계가 거의 일직선으로 나타날 때 저류고와 유출고간의 역효과곡선(power regression curve)이 저류함수를 의미한다. 그러므로 역효과곡선에서 저류고와 유 출고 사이의 상관관계가 최대가 될 때의 저류기간이 최적저류기간이라고 볼 수 있으며, 이 때의 최적상수가 \(K \)과 \(P \)의 최적치가 된다(이정규 등, 1994; 이창해, 1995). 저류함수를 나타내는 식 (4)에 대수값을 취하 면 다음 식이 된다.

\[
\ln(s_i) = \ln(K) + P\ln(q_i) \\
Y = A + PX
\]

식 (11)에서 \(\ln(q_i) \)과 \(\ln(s_i) \)을 선형화되게 하면 상관계수 \(R \)을 구할 수 있다. 앞에서 설명한 Brent법에 서 상관계수 \(R \)을 목적함수로 보면 \(R \)이 최대가 되는 저류기간 \(T_i \)을 탐색할 수 있고 이것이 최적저류기간이 다. 또한 허위분석에서 구한 회귀 상수 \(A \)로부터 최적 메개변수 \(K \)는 다음 식으로 구한다.

\[
K = \exp(A)
\]

이렇게 메개변수의 최적치를 구하는 방법은 기존의

![그림 1. Brent method에 의한 최적값 탐색](image-url)
4. 통합저류함수모형

4.1 저류함수모형의 검토

일반적으로 강우-유출모형은 복잡한 수문현상을 별개의 매개변수를 가진 간단한 모형으로 표현하기 때문에 실제 유출현상을 정확하게 재현하는 것은 한계가 따르기 마련이다. 저류함수모형을 상세히 검토해 보면 다음과 같은 몇 가지 문제점이 지적할 수 있다(이정규 등, 1994; 이정규, 1995).

1) 유효우량을 산정할 때 포화우량에 도달하기 전과 후에 일정한 유출률을 사용하는 것은 강우-유출특성을 고려할 때 유의의 순상우량을 올바르게 표현하고 있다는 농 관할 수 없다.

2) 상행강우에 의한 토양의 수분율에 따른 유출특성 이 고려되어 있지 않다.

3) 유출액과 침투액의 유출조건 저류함수에 의해 비선형성을 가지는데 유출량 계산시에는 선형성이 가능한 중첩법을 적용하는 모전이 있다. 위에 열거한 문제점들을 해결하기 위해서는 강우와 유출액, 침투액 특성에 대응하는 f와는 다른 개념의 유출률의 도입이 필요하다.

저류함수모형의 또 다른 문제점으로는,

4) 유역 내 저류상태의 변동에 따른 저류시간의 변화와 그에 수반되는 매개변수의 변화가 고려되지 않는다.

5) 평균우량을 사용하는 검출모형이므로 강우 중심의 위치에 따라 유출특성에 달라지는 점이 고려되지 않는다.

이러한 문제점은 모형의 각종 매개변수들을 상수로 취급하기 때문에 발생한다고 여기지만, 실제 유출현상을 올바르게 재현하기 위해서는 매계변수를 시간변수(zeit variable)로 취급하는 것이 타당할 것으로 생각된다.

한편, 하도저류함수모형에서 잔유액이 수반되는 경우에 하류단 유출량에서 산출된 종류적으로 상수단 유입량 성분과 잔유액 유입량 성분을 명확하게 분리하는 것은 사실상 불가능므로 저류함수모형을 적용할 때 상호작용을 가질 수밖에 없을 뿐 아니라, 하도 저류량을 정량하는 방법도 제시되어 있지 않다. 이러한 문제점을 개선하기 위하여 본 연구에서는 유역과 하도에 적용할 수 있는 통합저류함수형 (integrated storage function model; ISFM)을 제안하고자 하며, ISFM의 매개변수는 시변성으로 다룬다.

4.2 통합저류함수모형(integrated storage function model; ISFM)

본 연구에서는 외부 영향 하도저류함수모형의 문제점을 개선하기 위하여 통합저류함수형(ISFM)을 제안한다. ISFM의 개념은 하도저류수치가 일정한 상수단의 유입량을 강우강도계수로 한정한 동가강우강도 r_{eqp}(equivalent rainfall intensity)와 잔유액의 실제 강우강도를 합한 강우강도계수를 잔유액에 다른 가상 강우로 가정한 후, 이것을 이용하여 수정저류함수모형으로 유출량을 계산한다는 점이 특징이다(그림 2 참조).

상수단 유입량에 대한 동가강우강도는 다음 식으로 계산한다.

$$r_{eqp} = \frac{3.6Q}{CA}$$ (13)

여기서 Q는 상수단 유량(m/s)이고, A는 경계면적(m²), C는 동가강우 강우계수, A는 유적이면적(m²)이다. 통합저류함수모형은 하도와 잔유액에 대하여 각각 별도로 흡수측정을 시행하지 않고 하나의 독립된 유약으로 취급하기 때문에 상수단 유입량에 대하여 별도의 하도측정을 수행할 필요가 없게 된다. ISFM을 적용하기 위하여 기존 모형의 연속방정식은 잔유액 강우에 동가강우를 합산하여 다음과 같이 수정 된다.
그림 2. 통합저류함수모형의 개념도

\[f(r_{avw} + r_{eqv}) - q_i = \frac{ds_i}{dt} \] \hspace{1cm} (14)

\[f = \frac{\int_{t_1}^{t_2} q(t) dt}{\int_{t_1}^{t_2} (r_{avw} + r_{eqv}) dt} \] \hspace{1cm} (15)

여기에 \(t_1 \)과 \(t_2 \)는 수문구간 상에서 산주부와 하강부의 유호유출구가 같은 시간을 의미하며, 이 때 수용하는 유호유출구는 일반적으로 청두유출구의 약 10~20\%에 해당하는 값을 사용한다. 유출량의 계산은 식 (6)에서 유출량과 저류량의 구분을 없애고, 포화우량의 개념을 두고 하면 수정저류함수모형과 같이 다음식으로 나타낼 수 있다([이정규 등, 1994; 이창현, 1995]).

\[O = \frac{A}{3.6} f_s(t) q_i + O_i \] \hspace{1cm} (16)

여기서 \(f_s(t) \)는 시변성 메개변수로 변동유출률이다.

다음으로, 저류함수의 메개변수 \(K, P, T \)을 상수로 취급하기 때문에 발생하는 문제점을 최소화하기 위해서는 유출특성가 반영될 수 있도록 메개변수에 시변성을 도입할 필요가 있다. 그러나 메개변수 모두를 시변성으로 취급하는 것은 계산과정이 복잡해지고 계산시 간이나 제어효과의 측면에서 오히려 비효율적이 되는 문제점이 있으므로 본 연구에서는 \(K \)만을 시변성 메개변수로 한다([이창현, 1995]).

통합저류함수모형은 다음과 같이 정리될 수 있다.

\[s_i = K(t) q_i^p \] \hspace{1cm} (17)

\[f(r_{avw} + r_{eqv}) - q_i = \frac{ds_i}{dt} \] \hspace{1cm} (14)

\[O = \frac{A}{3.6} f_s(t) q_i + O_i \] \hspace{1cm} (16)

여기서 시변성 메개변수인 \(f_s(t) \)와 \(K(t) \)는 5장에서 설명된 퍼지패널기법에 의해 제어된다.

5. 퍼지이론의 적용

5.1 퍼지이론

컴퓨터가 인공지능을 가지고 인간이 원하는 바를 제대로 수행하기 위해서는 인간이 사용하는 수학이 있고 예측한 표현을 처리할 수 있어야 한다. 이러한 인간의 예측한 언어 또는 표현을 처리할 수 있는 이론적인 바탕을 제공하는 것이 퍼지이론(fuzzy theory)이다 ([이정규과 오길록, 1991]). 퍼지이론은 Zadeh(1965)에 의해 제안되었다. Zadeh는 그의 논문 “Fuzzy Sets”에서 퍼지이론의 기초가 되는 퍼지집합에 대하여 정의하였다. 퍼지집합이란 인간사고와 같이 명확히 정의되지 않는 집합을 수학적으로 표현한 것으로 보통집합이론의 수학적 확장이라 할 수 있다. 퍼지이론은 현실의 불확실한 상태와 인간의 언어, 의미, 사고, 측정 등에 본질적으로 포함되어 있는 예측보현(fuzzy) 표현을 수학적으로 다룰 수 있도록 퍼지이론의 범위를 넓혔으
며, 이 이론에 바탕을 둔 페지체어는 공학적으로 널리 응용되고 있다.

5.2 페지체어

주어진 규칙(rule)과 사실(fact)의 모임으로부터 논리적으로 타당한 새로운 사실(또는 규칙)을 얻어내는 과정을 추론이라 한다. 기존의 2치 논리(binary logic)에 바탕을 둔 추론방법은 매우 단순하며 그 결과가 정확하였거나 작용범위가 한정되어 있었다. Zadeh는 기존의 추론방법에 페지추론을 적용하여 기존의 2치 논리로는 처리할 수 없었던 추론을 자연스럽게 유도해낼 수 있는 페지추론(fuzzy reasoning)이라고 하는 새로운 추론법을 발표하였다. 이처럼 페지추론의 기본적 이론은 Zadeh에 의해 제시되었으나 실제 제어에의 공학적 응용은 Mamdani(1974)에 의해 시도되었다. 그는 비선형성을 가지며 동작특성이 시간에 따라 변화하는 모형 등기기관의 속도제어에 페지추론을 응용하여 기존의 PID(proportional integral derivative)제어에 비해 우수한 결과를 얻었다. 이것이 페지추론을 공학적인 분야에 응용한 최초의 사례이며 이것은 페지체어(fuzzy control)라 한다. 여기서 사용된 페지추론 법은 Mamdani의 추론이라 하며, 오늘날 페지체어에 가장 널리 이용되고 있는 방법 중 하나이다.

일반적으로 페지체어(fuzzy controller)는 시스템의 특성이 복잡하여 기존의 정량적인 방법으로 해석할 수 없거나, 언어는 정의가 정확적이고, 정확하기로 볼환되기로 기존의 제어방법을 보다 우수한 제어효과를 나타내는 것으로 알려져 있다. 페지체어의 핵심은 입력의 언어적 형식의 제어규칙이며 여기에는 페지적인 관계가 포함되어 있고, 페지함수규칙에 의해 제어임력이 형성된다. 이러한 페지체어는 병렬형 제어, 논리형 제어, 언어적 제어라는 장점을 가지고 있다. 예를 들어, 오차입력으로부터 출력(제어입력)을 얻어내기 위해 페지체어는 페지회로방법, 지식베이스, 의사결정논리법(추론법)에서, 비교방법으로 구성되어 있으며, 각 구성요소를 맡순행 다음과 같다(이중행과 오길복, 1991).

5.2.1 페지화(fuzzification)

페지화란 주어진 입력변수값을 페지체어를 위해 적절한 페지값(페지함수)으로 바꾸는 것을 말한다. 주어진 값의 영역(range)을 그대로 페지변수의 영역으로 사용하기보다는 이를 페지회로에 페지화하도록 하며, 정해놓은 입력페지변수의 전체집합으로 맞추어 주는 것이 페지화다. 따라서 페지화의 작업은 전체집합에 따라서 적절히 크기를 변환시키는 작업(scale mapping)이라 할 수 있다.

그림 3에서는 앞에서 알 수 있는 바와 같이 세로축은 각 입력량을 페지화시켰을 때의 페지변수의 크기를 나타내며, 세로축은 각 페지변수가 속하는 정도를 나타내는 소속함수의 크기를 나타낸다. 여기서 NB(negative big), NM(negative medium), NS(negative small), ZO(zero), PS(positive small), PM(positive medium), PB(positive big)는 페지변수이며, 언어적 변수의 의미를 약어로 표시하는 페지함수의 이름이다.

소속함수는 예의 페지체어로 입력값의 크기를 판단하므로, 몇 원본의 제어행을 선택하여 그 영역의 크기를 나타내는 것으로 사용된다. 선택한 영역의 크기를 입력값의 크기로 변환시킨다.

5.2.2 지식베이스

지식베이스는 데이터베이스와 제어규칙부로 나누어
진다. 데이터베이스란 다음에 설명하는 제어규칙들의 집합으로 matrix 형태로 구성된 것을 의미한다. 제어규칙들을 설명하기 위해서는 우선 시스템의 특성을 고려해서 입력변수의 영역(range)을 몇 개로 나누게 되는데 이를 입력공간의 분할이라 한다. 일반적으로 제어입력공간의 영역분할을 하는 일정한 규칙이 있는 것은 아니고, 또한 최적의 선택규칙도 없다. 따라서 시스템의 특성에 대한 지식과 시행착오에 의해 결정하게 된다. 대개 하나의 입력변수에 대하여 7 개로 분할하 면 충분하다고 알려져 있다.

5.2.3 제어규칙

피자재를 위해서는 피자이론에 기초를 두고 있는 피자추론을 사용한다. 피자추론을 하기 위한 핵심적 부분은 일반적 인어가 형식의 제어규칙이며, 여기에는 피자추론사가 포함되어 있고 피자추론의 합성연산과 비파리학에 의해 구간진 출력치가 제어대상인 시스템 또는 모형의 제어적일이 된다.

피자재의 장점은 종류의 $u = f(x_1, x_2, \ldots; x_m)$과 같은 관계를 수학적으로 결정해야 하는 단일 제어식이 아니고, 복수개의 if-then 형식을 가진 제어규칙으로 구성된 병렬형 제어이므로 비선형성이 크고 복잡한 플랜트의 제어에 효과적이고, 조건이 느슨하고 유연한 피지논리 사용하므로 전문가의 지식을 도입하기가 용이하며, 제어규칙이 인간의 일상인식럼대로 되어 있는 인식적 표현을 사용하므로 제어의 구조를 이해하기 쉽고 제어규칙의 수정이 용이하다는 것이다. 피자재규칙을 구성하는데 있어서 선형해야 할 작업은 제어의 입력으로 사용되는 상태변수와 출력인 제어입력변수를 선정하는 것이다. 피자재에 사용되는 인식적 입력변수는 상태, 상태오차, 오차의 변화량 및 오차의 누적 값 등이 있다.

유출모형의 매개변수는 제어할 때 사용할 제어입력변수로서 본 연구에서는 상태오차와 오차의 변화량을 사용하였다. 관측유출량을 $O_m(t)$, 계산유출량을 $O_c(t)$라 하면, 오차 $e(t)$와 오차의 변화량 $\Delta e(t)$는 다음과 같이 표시한다.

$$e(t) = O_c(t) - O_m(t)$$

$$\Delta e(t) = e(t) - e(t-1)$$

또한, 제어식의 변화량 ΔB로부터 제어할 매개변수 $B(t)$를 다음과 같이 구할 수 있다.

$$B(t) = B(t-1) + \Delta B$$

따라서, 피자재의 입출력관계는 다음과 같이 되며 이에 입력변수 $e, \Delta e$로부터 출력변수 ΔB를 추론하는 과정에 피자추론이 도입된다.

$$e, \Delta e \rightarrow \text{fuzzy reasoning} \rightarrow \Delta B$$

이와 같은 피자추론 과정에는 다음과 같은 여러 개의 제어규칙들이 포함된다.

If e is NB and Δe is ZO then ΔB is PB.
If e is NM and Δe is ZO then ΔB is PM.
If e is ZO and Δe is NB then ΔB is PB.
If e is ZO and Δe is NM then ΔB is PM.
If e is PM and Δe is ZO then ΔB is NM.
If e is PB and Δe is ZO then ΔB is NB.

일반적으로 제어규칙은 그 추출범위에 따라 도입되는 제어규칙, 피자변수의 형태, 추론방법 등이 달리며, 경우에 따라서는 몇 가지 방법이 혼용되기도 하는 등, 아직 보편적이지 못한 명확한 이론은 정립되어 있지 않다. 그러므로 모형의 특성에 대한 이해, 제어과정의 feedback을 통한 제어규칙의 수정 및 개선 등으로 제어효과를 더욱 향상시킬 수 있을 것이다(김한성, 1998).

본 연구에서 채택한 피자재규칙은 저류함수모형에 적용했을 때 우수한 제어효과를 보인 Kosko(1992)의 제어규칙을 사용하였다고 본(표 1.)

<table>
<thead>
<tr>
<th>Δe</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZO</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PM</td>
<td>PS</td>
<td>ZO</td>
</tr>
<tr>
<td>NM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PM</td>
<td>PS</td>
<td>ZO</td>
<td>NS</td>
</tr>
<tr>
<td>NS</td>
<td>PB</td>
<td>PB</td>
<td>PM</td>
<td>PS</td>
<td>ZO</td>
<td>NS</td>
<td>NM</td>
</tr>
<tr>
<td>ZO</td>
<td>PB</td>
<td>PM</td>
<td>PS</td>
<td>ZO</td>
<td>NS</td>
<td>NM</td>
<td>PB</td>
</tr>
<tr>
<td>PS</td>
<td>PM</td>
<td>ZO</td>
<td>NS</td>
<td>NM</td>
<td>PB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>PM</td>
<td>PS</td>
<td>ZO</td>
<td>NS</td>
<td>NM</td>
<td>PB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>PB</td>
<td>ZO</td>
<td>NS</td>
<td>NM</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
</tbody>
</table>

表 1. Kosko의 제어규칙
5.2.4 의사결정(폐지추론)

폐지체계에서 언어적인 형태로 기술된 폐지체계규칙을 적용하기 위해서는 논리적인 실행과정이 필요하다. 이를 폐지추론이라고 한다. 폐지추론방법은 크게 직접추론법, 간접추론법, 혼합추론법으로 나눌 수 있다.

\[
\mu_{X}(A \cdot B) = \min[\mu_{X}(e), \mu_{Y}(A \cdot e)]
\]

 여기서, \(X\)는 \(e\)에 대한 폐지집합, \(Y\)는 \(A\)에 대한 폐지집합이며, \(i, j\)는 각각 피제한수를 나타낸다. 다음에는 각 제어규칙들을 합성하는 방법으로 다음과 같은 sup 연산을 하게 되는데, 이는 최대치를 나타내는 supreme이라는 의미이며, 이것은 결과적으로 전체 제어규칙을 나타낸다. 이것을 소수함수로 표시하면 다음과 같은 식과 같이 minimum연산으로 표현된다.

\[
\mu_{X}(A \cdot B) = \max[\mu_{X}(A \cdot B)]
\]

5.2.5 비파시화(defuzzification)

5.2.4절의 추론과정에서 얻어진 결과는 폐지집합으로 표시되므로 실제로에 사용하기 위해서는 논리적 조정량 \(A\cdot B\)을 결정하여야 한다. 이와 같이 출력측 전체 집합에서 정의된 피지 제어조작량을 명확한 비파시 제어조작량으로 변환시켜 주는 작업을 비파시화라 한다.

이 방법에는 최대값행방법(max criterion method), 최대값평균법(mean of maximum method), 무게중심법(centre of area method) 등이 있다. 일반적으로 무게중심법이 다른 방법들에 비해 우월한 성능을 보이는 경향이 있다(이정형과 오길록, 1991).

본 연구에서는 무게중심법을 사용하여 다음과 같이 조정량을 계산하였다.

\[
\Delta B' = \int \frac{\Delta B \mu_X(A \cdot B) \mu_Y(A \cdot B)}{\int \mu_X(A \cdot B) \mu_Y(A \cdot B)}
\]

이런 과정을 거쳐서 결정된 조정량 \(\Delta B\)에 의하여 모형의 시변성 매개변수 \(K\)와 \(f_2\)가 각각 제어되게 된다.

6. 결 론

본 연구는 국내에서 강수-유출모형으로 널리 이용되고 있는 저류합수모형을 개선하였다. 기존 저류합수모형의 단점인 매개변수 산정의 부정확성과 비가공판을 개선하기 위하여 Brent법에 의한 최적매개변수를 이용하였으며, 시간에 따른 유역의 변동 특성에 적절하게 대응하기 위하여 모형의 매개변수를 시변성 변계변수로 하였으며 이의 세계에 피지기법을 도입함으로써 수문기술자들의 경험에 의존하던 매개변수 보정의 자동화 및 객관성 확보를 통해 모형의 정확성을 향상시키고자 하였다. 또한, 흙수추적계 가장 침착하고 어려운 문제 중의 하나인 수계구간의 상류단과 하류단 사이로 유입하는 저류합수(local inflow)의 처리 문제를 해결하기 위한 방법으로 기존의 유역모형과 하도모형을 하나의 단일모형으로 하는 통합저류합수모형(ISFM)을 제안하였다.

제안된 통합저류합수모형의 타당성을 검증하기 위하여 다음 논문에서는 국내의 하천 중 IHP 대표유역인 위천 유역과 보청천 유역에서 성수연에 대한 모형의 적용성을 살펴보았으며, 이를 바탕으로 대류유역이 남한강 유역과 나들목 유역에서의 흙수량을 해석함으로써 제안된 모형의 실제 흙수량예측시스템에의 적용 가능성을 검증하였다.

감사의 글

본 연구는 한국과학재단 목적기초연구(과제번호: 971-1205-022-2)지원으로 수행된 연구 성과 중 일부 입니다. 한국과학재단의 지원에 감사드립니다.

참 고 문 헌

담응영처 탐운영1부 (1993). 다목적댐 흙수유출해석
학 및 종수기 저수지 운영 프로그램 허설서, 한국수자원공사.
심순보, 김성주, 고석구 (1992). “최적화기법에 의한
저류급수 유출분량의 자동보정.” 대한토목학회논문집, 대한토목학회, 제12권, 제3호, pp. 127~137.
홍동철학술관사.
이정규 (1994). 수자원사업에 필요한 수문설계 전산
모형 개발- 페지추론의 도입 - 국제수문개발계
회 연구보고서, 건설부.
이정규, 이창해, 이종인 (1994). “홍수유출예측에
이창해 (1995). 시변성 매개변수의 페지제어하는 저
류함수모형에 관한 연구, 박사학위논문, 한양대
학교.
장욱 (1987). 저류함수모형을 이용한 유역의 홍홍
수량 산정과 지역홍수변도해석: IHP위천대표유
역을 중심으로, 과학화학논문, 고려대학교.
건설省水文研究会 (1971). 流出计算例题集 Ⅱ, 全
日本技术協会.
建設省 水工研究所.
木村俊晃 (1961b). “貯留関数法 (Ⅰ) -貯留関数法の
背景.” 土木技術資料, 第3卷, 第12호, pp. 654~661.
木村俊晃 (1962a). “貯留関数法(Ⅱ) -貯留関数法の
基本的構成.” 土木技術資料, 第4卷, 第1호, pp. 41~51.
木村俊晃 (1962b). “貯留関数法(IV-2).” 土木技術
資料, 第4卷, 第7호, pp. 297~303.
の流出状態.” 農業土木学会 論文集, 第114호, pp. 15~20.
適同定法.” 農業土木学会論文集, 第131호, pp.
における論理時間 TIの一推定法.” 土木技術資
料, 第12卷, 第6호, pp. 309~313.
平松和昭, 田中宏平, 田中龍之, 瀬口昌洋
定法と洪水解析- 山地小流域の洪水流出に関す
る確率システム理論的研究(Ⅱ).” 農業土木学会
論文集, 第131호, pp. 33~38.
“Comparison of Newton-type and direct
search algorithms for calibration of conceptual rainfall-runoff models.” Water
Resources Research, Vol. 24, pp. 691~700.
search solutions of numerical and statistical
problems.” J. Assoc. Comut. Math., Vol. 8,
No. 2, pp. 212~229.
Kosko, B. (1992). Neural Networks and Fuzzy
Systems. Prentice Hall.
algorithms for control of simple dynamic
121, No. 12, pp. 1585~1588.
Press, W.H., Flannery, B.P., Teukolsky, S.A.,
Recipes. Cambridge University Press.
flexible structure for fuzzy systems
models.” Fuzzy Sets, Neural Networks,
and Soft Computing, Edited by Yager, R.R.,
and Zadeh. L.A., Van Nostrand Reinhold,
p. 1~28.
& Control, Vol. 8, pp. 338~353.
(논문번호:00-053/접수:2000.08.14/심사완료:2000.10.30)