A Method for Quantitative Performance Evaluation of Edge Detection Algorithms Depending on Chosen Parameters that Influence the Performance of Edge Detection

경계선 검출 성능에 영향을 주는 변수 변화에 따른 경계선 검출 알고리듬 성능의 정량적인 평가 방법

  • 양희성 (성균관대학교 전기전자 및 컴퓨터공학부) ;
  • 김유호 (성균관대학교 전기전자 및 컴퓨터공학부) ;
  • 한정현 (성균관대학교 전기전자 및 컴퓨터공학부) ;
  • 이은석 (성균관대학교 전기전자 및 컴퓨터공학부) ;
  • 이준호 (성균관대학교 전기전자 및 컴퓨터공학부)
  • Published : 2000.06.01


This research features a method that quantitatively evaluates the performance of edge detection algorithms. Contrary to conventional methods that evaluate the performance of edge detection as a function of the amount of noise added to he input image, the proposed method is capable of assessing the performance of edge detection algorithms based on chosen parameters that influence the performance of edge detection. We have proposed a quantitative measure, called average performance index, that compares the average performance of different edge detection algorithms. We have applied the method to the commonly used edge detectors, Sobel, LOG(Laplacian of Gaussian), and Canny edge detectors for noisy images that contain straight line edges and curved line edges. Two kinds of noises i.e, Gaussian and impulse noises, are used. Experimental results show that our method of quantitatively evaluating the performance of edge detection algorithms can facilitate the selection of the optimal dge detection algorithm for a given task.



  1. Machine perceptions I. E. Sobel
  2. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI v.8 no.5 Detection of intensity changes with sub-pixel accuray using Laplacian-Gaussian masks A. Huertas;G. Medioni
  3. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI v.8 no.6 A computational approach to edge detection J. F. Canny
  4. Proceedings of The IEEE v.67 no.5 Quantitative design and evaluation of enhancement/thresholding edge detectors Ikaram. E. Abdou;William. K. Patt
  5. IEEE Trans. on Computers, C- v.24 no.6 On the quantitative evaluation of edge detection schemes and their comparison with human performance Jerry. R. Fram;Edwards. Deutsch
  6. Graphics and Image Processing v.44 Hierarchical edge detection G. F. McLean;M.E.Jernigan
  7. IEEE Trans. On System, Man, and Cybernetics v.11 no.9 Edge evaluation using local edge cohrence Les Kitchen;Azriel Rosenfeld
  8. IEEE Trans. On Image Processing v.4 no.12 A methodology for the quantitative performance evaluation of detction algorithms M. Y. Jaisimha; Hohn Palmer:Robert M. Haralick
  9. IEEE Trans. On Pattern Analysis and Machine Intelligence v.19 no.12 A robust visual method for assessing the relative performance of edge detector algorithms Michael D. Heath;Sudeep Sarkar,;Thomas Sanocki;Kevin W. Bowyer
  10. The art of computer programming Donald E. Knuth