밀리미터파 MMIC의 개발 현황 및 전망

  • Published : 2000.04.01

Abstract

Millimeter wave is expected as the unlimited useful frequency resources for the next generation wireless communication services. In the past, its usage was limited to the military warfare due to lack of millimeter devices. The development of GaAs pHEMT in 1980 and the progress in the processing technologies made the new consumer wireless services possible utilizing millimeter waves. Specially, most of passive components necessary for circuit design can be integrated with GaAs pHEMTs and this removes the difficulty in assembly unavoidable in hybrid design. InP based pHEMTs developed later possess all the properties of GaAs and it shows many advantages in higher frequency applications. In this paper, the status and trends of those devices and MMICs are presented and the future developing trends is also described.

Keywords

References

  1. IEEE Trans. Microwave Theory Tech. v.44 Micromachined W-band filters S. V. Robertson(et al.)
  2. IEEE Electron Devices Lett. v.EDL_7 High efficiency millimeter wave GaAs/AlGaAs power HEMTs P. Saunier(et al.)
  3. IEEE Microwave and Guided wave letters no.10 A high-efficiency 94GHz 0.15m InGaAs/InAlAs/InP monolithic power HEMT amplifier R. Lai(et al.)
  4. IEEE 1993 Microwave and Millimeter Wave Monolithic Circuits Symp. A broad and planar doubly balanced monolithic Ka-band diode mixer S. A. Maas(et al.)
  5. IEEE Electron Devices Lett. v.EDL-7 GaAs/AlGaAs heterojunction MISFETs having 1W/mm power density at 18.5GHz B. Kim(et al.)
  6. IEDM Tech Dig. Novel high performance self-aligned of 0.1um gatelength $Al_{0.48}In_{0.52}As-Ga_{0.38}In_{0.62}As$ pseudomorphic HEMT's U. K. Mishra(et al.)
  7. Microwave circuit design using linear and nonlinear techniques G. D. Vendelin(et al.)
  8. Appl. Phys. Lett. v.43 Measurement of conduction band discontinuity of molecular beam epitaxial growth $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterojunction by C-V profiling R. People(et al.)
  9. IEEE Trans. Microwave Theory and Tech. v.MTT-33 no.12 Design and process sensitivity of a two-stage 6~18GHz monolithic feedback amplifier J. M. Beall(et al.)
  10. IEEE MTT-S Dig. High performance high yield millimeter-wave MMIC LNAs using InP HEMTs L. T. Tran(et al.)
  11. IEEE Trans. Microwave Theory and Tech. v.MTT-34 no.12 Cost effective high performance monolithic X-band low noise amplifiers D. C. Wang(et al.)
  12. IEEE Electron Device Lett. v.12 no.13 A 1.45W/mm, 30GHz InP-channel power HEMT O. Aina(et al.)
  13. IEEE MTT-s int. Microwave Symp. Tech. Dig. Low noise high electron mobility transistors J. J. Berenez(et al.)
  14. Applied Phys. Lett. v.33 no.7 Electron mobilities in modulation doped semiconductor heterojunction superlattices R. Dingle(et al.)
  15. IEEE MTT-S Dig. Ka-band ultra low noise MMIC amplifier using pseudomorphic HEMTs S. Fujimoto(et al.)
  16. IEEE Electron Devices Lett v.ED-7 Microwave performance of a quarter micrometer gate low noise pseudomorphic InGaAs/AlGaAs modulation doped field effect transistor T. Henderson(et al.)
  17. IEEE Trans. Microwave Theory and Tech. v.MTT-33 no.12 X-band monolithic series feedback LNA R. Lehmann(et al.)
  18. in 1994 IEEE GaAs IC Symp. Dig. A novel w-band monolithic push-pull power amplifier H. Wang(et al.)
  19. IEEE Trans. Electron Devices v.12 60GHz pseudomorphic $Al_{0.25}Ga_{0.75}As/In_{0.28}Ga_{0.72}As$ low noise HEMT's K. L. Tan(et al.)
  20. Proc of the IEEE v.80 no.4 Ultra-high speed modulation doped field effect transistors: A tutorial review L. D. Nguyen(et al.)
  21. GaAs IC Foundry design manual(Process H40) The GEC-Marconi Company
  22. IEEE Electron Device Lett. v.12 no.13 Elimination of mesasidewall gate leakage in InAlAs/InGaAs heterojunctions by selective side-wall recessing S. R. Bahl(et al.)
  23. IEEE Electron Devices Lett. v.11 94GHz 0.1um T-gate low noise pseudomorphic InGaAs HEMT's K. L. Tan(et al.)
  24. IEEE Trans. Microwave Theory and Tech. v.MTT-35 no.6 Uniplanar MMIC hybrids-A proposed new MMIC structure T. Hirota(et al.)
  25. IEEE Trans. Electron Devices v.ED-33 Characterization of InGaAs/AlGaAs pseudomorphic modulation doped field effect transistors A. Ketterson(et al.)
  26. IEEE Microwave and guide Wave Lett. v.8 no.11 An InP HEMT MMIC LNA with 7.2dB gain at 190 GHz R. Lai(et al.)
  27. J. Vac. Sci. Tech. v.B6 no.2 The impact of epritaxial layer design and quality on GaInAs/AlInAs high electron mobility transistor performance A. S. Brown(et al.)
  28. GaAs Monolithic microwave integrated circuit(MMIC) foundry fabrication services TRW Electronic Systems Group
  29. IEEE Trans. Electron Devices v.35 The role of inefficient charge modulation in limiting the current gain cutoff frequency of GaAs MODFET M. C. Foisy(et al.)
  30. IEEE Trans. Electron Devices v.ED-33 Microwave power double-heterojunction HEMT's K. Hokosaka(et al.)
  31. GaAs IC Foundry design manual(100um substrate passive components) The GEC-Marconi Company
  32. 대한민국 주파수 분배표 한국무선국관리사업단
  33. IEEE Trans. Microwave Theory and Tech. v.MTT-38 no.3 Reduced size branch line and rat race hybrids for uniplanar MMIC's T. Hirota(et al.)
  34. IEEE Trans. Microwave Theory and Tech. v.MTT-37 no.10 Very small wide band MMIC magic-'s using microstrip lines on a thin film T. Hiraoka(et al.)
  35. Electron Lett. v.24 no.6 0.1 um gatelength MODFETs with unity current gain cutoff frequency above 110 GHz A. N. Lepore(et al.)
  36. IEEE J. Solid-State Circuits v.28 no.10 110~120GHz monolithic low noise amplifiers H. Wang(et al.)
  37. IEEE MTT-S Symp. Dig. High power and high efficiency AlInAs/GaInAs on InP HEMTs M. Maltobian(et al.)
  38. IEEE Electron Device Lett. no.12 High-gain w-band pseudomorphic InGaAs power HEMTs D. C. Streit(et al.)
  39. IEEE Electron Devices Lett. v.EDL-6 Power performance of microwave high electron mobility transistors P. M. Smith(et al.)
  40. IEEE MTT-s int. Microwave Symp. Tech. Dig. Noise performance of microwave HEMT K. Joshin(et al.)