Characterization of Crude Oil Degradation by Klebsiella sp.
KCL-2 Isolated from Sea Water

Jae-Young Cha, Hae-Sun Kim, Young-Su Cho, Young-Choon Lee and Yong-Lark Choi*

Faculty of Natural Resources and Life Science, Dong-A University, Pusan 604-714, Korea

Abstract

Several bacterial strains utilizing crude oil as their sole carbon and energy source were isolated from polluted marine by crude oil. One of the strains, named KCL-2 showed strong degradation activity for crude oil. This strain was identified as a Klebsiella sp. based on the morphological, biochemical, and physiological characteristics. The optimum cultural conditions were as follows, 27°C~37°C for temperature and 7.0 for initial pH. Additionally, the optimal concentration of sodium chloride was 3.0%, confirming indicating that this strain was derived from sea water. The strain KCL-2 could use several kinds of n-alkane hydrocarbons from octadecane to octacosane as a sole carbon source. The emulsifying activity by KCL-2 was the highest after 3 days of cultivation under the condition of 3.0% sodium chloride, pH 7.0 and 32°C. This strain had several criptic plasmids.

Key words – Klebsiella sp. KCL-2, crude oil, n-alkane hydrocarbon, emulsifying activity,

서 론

해양에서 유출된 유류는 점성이나 화합성의 불리적 성질, 유류의 화학적 성질, 해양생태계와 해양환경 등의 기상상태, 해수의 온도, 오염, 부유물질 및 존재하는 바꺼류의 성장에 따라 변한다[7]. 유리처리 방법론의 하나인 성분학적 방법으로는 해양유류 오염물질인 n-iso-, cyclo-alkane 개질의 단화수소원과 원유(crude oil) 및 경유, 중유 등의 석유 제품에 대한 다양한 단화수소원의 기질을 분해시키는 균주를 분리, 분석하여 실험으로 오염현장에 적용되고 있다[5, 6, 12, 18]. 이러한 유류 분해의 해양 마생물로서는 Aeromonas, Arthrobacter, Corallospora, Dendryphiella, Pseudomonas 등이 대부분을 차지하고 있으며[5, 6, 15], 또한 이들 균주가 생산하는 유화체 등이 분리 정제하여 실험으로 이용되고 있다. 우리나라의 유류 연안 불순물은 최근 10년간 13% 이상 증가하였고, 유류의 수출입 불순물은 16% 이상으로 증가하였다. 유조선의 사고 등에 의한 유류 유출 및 각종 폐유 방출 등으로 해양유염이 늘어나면서 해양 생태계에 커다란 피해를 유발시키고 있다. 최근, 유류수송 선박의 대형화, 자동화 및 고속화를 따라 해양사고가 수만톤에서 수십 만톤에 이르는 초대형 오염사고도 발생하고 있는데, 전세
유무영 역에서 분리된 *Klebsiella* sp. KCL-2에 의한 유무영 독성

계적으로 원유가 해양으로 유출되는 양은 엄청나다[10,11,13]. 우리나라에서 유무영 오염사고가 수십차례 발생하여 해양오염에 의한 자연 생태계의 파괴와 연안 해역에서의 양식업에도 중대한 피해를 입고 있다. 이러한 해양 유무영 오염의 발생과의 아울러 이들을 해결하라는 노력들이 다방면에서 많은 연구자들에 의해 활발하게 진행되어 있다 [9,17,18].

해양 유무 영사고시 유무영오염의 조기조기, 오염의 확산 방지 및 효율적인 방제를 위한 생물학적 처리 방법으로서 오염의 크기 및 방향을 대상으로 산물한 경제적 효과의 개발이 더욱시 필요할 수 있는 것이었다. 따라서, 해양 유무영 오염에 대한 계통적 파악은 중요함을 지나게 할 수 있었다. 따라서, 해양 유무영 오염에 대한 계통적 파악은 중요함을 지나게 할 수 있다. 본 연구에서는 해양 유무 영사고시의 생물학적 특성과 분자유전학적 특성을 보면 하기 위하여 해양으로부터 이러한 미생물 자원은 더욱 중요하다. 또한 유무영 오염에 대한 계통적 파악은 개발의 성공을 해상 미생물로부터 얻기 위한 검증 자료를 얻을 목적으로 원유 분해능이 우수한 균주를 해양으로부터 분리, 동정하여 분류학적 위치를 확정하고, 선별된 원유 분해 균주의 특성, 균주 성육도, 유휴도 및 유휴도의 분해 특성에 대하여 설명하였다.

재료 및 방법

배지 및 배양방법

유무영 분해 미생물을 분리하기 위하여 배지중에서 탄소원이 절원된 C-배지(Carbon-minimal medium)를 사용하였다. 배지의 조건은 (NH₄)₂SO₄ 5g/L, KH₂PO₄ 2g/L, MgSO₄ 7H₂O 0.2g/L, K₂HPO₄ 1g/L, CaCl₂ 10mg/L, K₂SO₄ 7H₂O 10mg/L, NaCl 30g/L, yeast extract 0.2g/L 및 trace element 8mg 2mL (MoO₃ 1mg/L, ZnSO₄ 7H₂O 7mg/L, CuSO₄ 5H₂O 0.5 mg/L, H₂BO₃ 1mg/L, CoCl₂ 6H₂O 6mg/L, NiSO₄ 6H₂O 1mg/L)를 함유하고 있으며, pH 7.0으로 조절하여 사용하였다. 탄소원으로 원유를 1% 천장한 C-배지에 체취한 해수를 1% 천장하여 37℃에서 200rpm으로 7일간 배양하였으며 공의 생육이 확인되면 새로운 C-배지에 굽주 및 원유를 각각 1% 천장하여 다시 배양하였다. 이렇게 3회 반복하여 생육을 판정한 굽주를 LB-고체배지에 도말하여 37℃에서 배양하였다. 선별된 단일 굽주를 LB 폴쳐배지 (NaCl 10g, Yeast powder 10g, Yeast extract 5g/L)에서 각각 배양기를 3일 후, 1% 원유가 천장된 C-배지에 1% 천장하여 37℃ 배양기에서 7일간 200rpm으로 배양한 후 유무영 분해능이 가장 우수한 굽주를 선별하였다.

균주의 분리

유무영 오염된 해양으로부터 유무영 분해능을 분리하기 위하여 유무영 분해능을 선택하여 선발된 후 배양한 후에 결과 유무영 분해능과 원유유무영 자원은 근원 유무영 지역으로부터 해수를 절취하여 분리시켜서 유무영 분해능을 측정한 후 각각 원유분해능이 유무영 생성을 강화하여 배양기에서 배양한 후에, 3일간 배양하였다. 배양액은 배양기에서 배양한 후에, 3일간 배양한 배양액을 폴쳐배지에 도말하여 37℃에서 배양하였다. 선별된 단일 굽주를 LB 폴쳐배지 (NaCl 10g, Yeast powder 10g, Yeast extract 5g/L)에서 각각 배양기를 3일 후, 1% 원유가 천장된 C-배지에 1% 천장하여 37℃ 배양기에서 7일간 200rpm으로 배양한 후 유무영 분해능이 가장 우수한 굽주를 선별하였다.

균주의 동정

선별된 균주를 동정하기 위하여 생학적, 생리학적, 생화학적 동정을 조사한 후 Bergey’s manual of systematic bacteriology를 근거로 하여 동정하였다[9].

균주의 생육도 측정

선별된 균주의 생육온도를 조사하기 위하여, 500ml 삼각 플라스크에 crude oil 1%를 함유한 C-배지 200ml 담고, LB배지 배지에서 배양된 결과 굽주 1%를 접합하여 25℃, 32℃, 37℃ 및 42℃에서 각각 200rpm으로 진동배양하였다. 이어서 배양시간에 따른 굽주의 성장은 1, 3, 5일째에 진동배양한 굽주를 일정장치하여 UV-VIS spectrophotometer (U-1000, Hitachi, Japan)를 사용하여 600nm에서 흉광도 (optimal density)를 측정하였다.

생육 pH의 영향은 배자주세요 pH를 5, 6, 7, 8 및 9로 각각 조정하여 실험하였고, 배양시간에 따른 굽주의 성장은 1, 3, 5일째에 진동배양한 굽주를 일정장치하여 600nm에서 흉광도를 측정하였고, 이때 굽주의 성장은 양호한 pH 7과 8의 배양액을 원심분리(3000 rpm, 10 min)하여 생육도를 측정한 후 유휴도도 측정에 이용하였다.

염분(NaCl)농도의 영향은 C-배지의 염분농도를 2%, 3%, 4% 및 5%로 각각 조정하여 실험하였으며, 배양시간에 따른 굽주의 성장은 처음 3일간은 12시간 간격으로, 그 이후로는 1일 단위로 진동배양한 배양액을 일정장치하여 600nm에서 흉광도를 측정하였다.
또한 benzene, toluene, xylene 및 m-alkane 계열 C₈에서 C₁₀까지의 각기 다른 단화수소원의 분해 및 생성음을 조사하기 위하여 10mℓ의 C-배가에 각각 0.1%씩 첨가하여 37℃에서 200rpm으로 5일간 배양시킨 후 600nm에서 흡광도를 측정하여 각 생육도를 확인하였다.

Crude oil 분해능 측정

선별된 균주의 crude oil 분해능을 측정시킬 수 있는 인자를 탐색하기 위하여, crude oil을 첨가하고 있는 10mℓ의 C-배가에 m-alkane계열 C₈에서 C₁₀까지의 각기 다른 단화수소원을 첨가시키며 5일간 건당배양 시킨 후 균주의 성장은 600nm에서 흡광도로 측정하였다. 이때 배양액에서 사용된 유의의 분해능을 측정하기 위하여 chloroform-methanol (2:1 V/V) 추출물을 동량 혼합하여 유용성을 완전히 추출 한 후 전기 건조기를 사용하여 chloroform 용액을 완전히 제거시켜 대조군(공세 무장군)과의 두께차를 측정하여 상대 증가량으로 나타내었다. KCL-1 균주의 배양기간에 따른 유해성의 변화를 보기 위하여 관대양액을 원심분리한 후 상층액을 염기 사용하였다. 유효성 측정은 0.5mM NaCl이 참 가된 28mM Tris-HCl 환경용액(pH 7.8) 5mℓ에 상층액 1mℓ 을 가하고, 가로에서 2% crude oil을 첨가하여 18%간 장가게 교반한 다음 10분간 장치끼리 중간부분에 반응용 2mℓ를 취하여 610nm에서 흡광도 측정값으로 나타내었다 [19].

결과 및 고찰

균주의 분리

전남 여천군의 해안 10여곳, 원유 석화장과 인근의 유유오염 지역으로부터 해수를 첨가하여, crude oil 분해능을 가지 미생물을 분리하기 위하여 탄소원의 결합된 C-배가 200mℓ에 crude oil 1% 및 해수가 1%씩 첨가하여 37℃, 200 rpm으로 진탕배양한 후, crude oil 분해능을 가지 한 생균이 생육하는 것을 확인하였다. 배양액의 일부를 crude oil 1%를 함유한 새로운 C-배가에 첨가한 실리를 3회 반복하였다. 이렇게 하여 얻어진 군주를 LB 고체배지상에 도발하여 단일 플라스크 막았으며 이 단일 플라스크를 LB 액체배지에 접종하여 37℃에서 18시간 건탕배양 시킨 후, crude oil 1%를 함유한 C-배가에 배양한 군주를 2% 첨가하여 37℃에서 7일간 건탕배양시켰다. 이때 대조군으로 C-배가에 crude oil 1%만 첨가 시킨것과, C-배가에 2% 균주만을 첨가시킨 것을 두었다. 대조군과 함께 7일간 배양 시킨 후, crude oil 분해능을 첨가 수십여 종의 군주를 분리하였으며, 이중에서 배양균이 강력한 KCL-2 균주에 대하여 계속하여 실험 하였다.

균주의 동정

선별된 KCL-2와 동정을 위하여 그램 엽색법, 형태학적 관찰 및 생화학적 실험을 수행한 결과를 Table 1에 나타내었다. 그램 엽색법에 의해서는 그램 응성균으로 확인되었으며, 전자미경 관찰에서는 밀집한 윤형을 가진 균주로 확인되었다. 생화학적 실험은 미생물 동정 kit인 API 20 NE Kit을 이용하여 Bergey's manual of systematic bacteriology(4)에 준하여 동정한 결과, Klebsiella sp. KCL-2로 판명되었다. 우리나라 및 외국의 유류 오염 지역에서 주로 분리되고 있는 균주로는 Pseudomonas sp., Aeromonas sp., Acinetobacter sp., 및 Arthrobacter sp. 등이 보고되고 있다[5,16]. 그러나 본 실험에서 분리한 Klebsiella sp. 균주는 이들과는 다른 종으로서, 앞으로의 생물유해성 제거, 윤활도성 수법에 의한 유류 군주의 개발 및 유류 분해능의 측정 인자 탐색 등을 위 한 많은 연구가 기대된다.

균주의 생육특성

분리군의 생육을 조사하기 위해 C-배가에 탄소원으로 crude oil 1%를 첨가하고 임상용물 달려한식액 Klebsiella sp. KCL-2를 건당배양시킨 후, 시험병에 서열을 하여 군주의 성장을 조사하였다. 그 결과, 본 실험에 사용한 KCL-2군은 음성균으로 3% 배지에서 가장 성장이 양호하였으며, 3일 정도의 배양에서 최대성장을 보였다(Fig. 1). 음성균 2%에서는 배양기간에 따라 광대성장이 정점 증가하는 경향을 나타내었으나 3%보다는 생육이 저조하였다. 이때 음성균 4% 및 5%에서는 군주 성장속도가 느리거나 생육이 거의 정지되어 KCL-2 군은 음성균도 4% 이상에서 성장이 제한되는 것으로 확인되었다. 이러한 결과는 유류분해 배양용으로 Klebsiella pneumoniae L25는 음성균 3.0 및 3.5%에서 최대의 성장을 보여주었으며[8], Acinetobacter sp.의 음성균은 3% [10], Rahnella aquatilis M12 및 Pseudomonas maltophilia N246은 3.0-3.5%로 보고[18]된 것과
유류오염 지역에서 분리된 Klebsiella sp. KCL-2에 관한 원유분해 특성

Table 1. Morphological and physiological characteristics of crude oil degrading marine bacteria

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Klebsiella sp. KCL-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological character</td>
<td></td>
</tr>
<tr>
<td>Gram strain</td>
<td>-</td>
</tr>
<tr>
<td>Mobility</td>
<td>+</td>
</tr>
<tr>
<td>Pigmentation of colony</td>
<td>Yellow white</td>
</tr>
<tr>
<td>Optimum temperature</td>
<td>32°C</td>
</tr>
<tr>
<td>Growth in air</td>
<td>+</td>
</tr>
<tr>
<td>Physiological character</td>
<td></td>
</tr>
<tr>
<td>Ortho-nitrophenyl β-D-galactopyranoside</td>
<td>+</td>
</tr>
<tr>
<td>Arginine dehydrolase</td>
<td>-</td>
</tr>
<tr>
<td>Lysine decarboxylase</td>
<td>+</td>
</tr>
<tr>
<td>Ornithine decarboxylase</td>
<td>-</td>
</tr>
<tr>
<td>Simmons citrate</td>
<td>+</td>
</tr>
<tr>
<td>Production of H2S</td>
<td>-</td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
</tr>
<tr>
<td>Trytophan deaminase</td>
<td>+</td>
</tr>
<tr>
<td>Indole</td>
<td>+</td>
</tr>
<tr>
<td>Acetone</td>
<td>+</td>
</tr>
<tr>
<td>Proteolysis of gelatin</td>
<td>-</td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
</tr>
<tr>
<td>Mannitol</td>
<td>+</td>
</tr>
<tr>
<td>Inositol</td>
<td>+</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>+</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>+</td>
</tr>
<tr>
<td>Saccharose</td>
<td>+</td>
</tr>
<tr>
<td>Melibiose</td>
<td>+</td>
</tr>
<tr>
<td>L-arabinose</td>
<td>+</td>
</tr>
<tr>
<td>Reduction of nitrates to nitrites</td>
<td>+</td>
</tr>
<tr>
<td>Reduction of nitrates to N2</td>
<td>-</td>
</tr>
<tr>
<td>Oxidase</td>
<td>-</td>
</tr>
</tbody>
</table>

+: Positive reaction, -: Negative reaction

일치하였다. 염분농도 5% 이상에서의 균생육과 유화성장
의 감소는 호흡증가 및 스트레스 작용에 의한 원인[2]으로
지적되고 있으며, 또한 염농도가 수치의 모든 생물군집에
중대한 영향을 미치는 결정요인으로 작용하는 것이 보고된
바 있다[14].

분리된 Klebsiella sp. KCL-2의 생육에 미치는 온도의
영향을 알아보기 위해 27℃, 32℃ 및 37℃에서 24시간
으로 생육이 진행하였으며, 32℃의 범위에서 최고의 생육
성향을 보여주었으며(Fig. 2), 42℃에서는 거의 생육이 이

Fig. 1. Effect of salt concentrations on the cell growth by Klebsiella sp. KCL-2(B) in C-medium containing crude oil.

Fig. 2. Effect of temperature on the cell growth by Klebsiella sp. KCL-2(B) in C-medium containing crude oil.
생물학과

배양온도를 나타내며 유류분해가온 대로 다양한 온도의 범위에서 갑 발생하는 것으로 나타났다.

 초기 pH의 영향과 유화력 측정

Crude oil 분해 군주의 생육 및 생물유화계 생성에 미치는 pH의 영향을 조사하기 위하여 C-배지의 초기 pH를 5, 6, 7, 8, 9로 각각 조절한 후 1, 3, 5일간 32℃에서 배양한 후 군체 생육을 측정한 결과를 Fig. 3에 나타냈다. KCL-2 군주는 pH 6과 8시각에서 높은 군체 생육을 보였으며, pH 5 이하와 pH 9에서는 군주의 생육이 급격히 감소하였다. 이상의 결과로부터 Klebsiella sp. KCL-2 군주의 생육 최적 pH는 중성 조건인 7.0 정도의 좻은 범위를 나타내고, 산성 및 알칼리성 조건에서는 군주의 생육이 약화되는 세인요인으로 작용함을 알 수 있었다. 이와 같은 결과는 해양 유류 분해 미생물의 생육에서 보아주는 pH 7.0과 7.5 등과 유사하였다[5,18].

 최적 생육조건의 범위를 보인 pH 7과 8의 조건에서 배양시간에 따른 유화력의 변화를 보기 위해 글래양파미를 중심 분리하여 상층액을 얻어 사용하였다. 그 결과, 배양 3일째 에 유화력이 가장 높게 나타났으며, pH 7의 조건에서 pH 8의 차이구보다 다소 낮게 나타났으며 이는 pH 조건에 따른 군주의 성장태도와 비교적 일치하였다(Fig. 4). 이러한 결과는 해양 유류 분해 세균인 Pseudomonas sp.로부터

Fig. 3. Effects of pH on cell growth by Klebsiella sp. KCL-2(B) in C-medium containing crude oil.

Fig. 4. Effects of pH on emulsifying by Klebsiella sp. KCL-2(B) in C-medium containing crude oil.

의 계면활성제의 생성이 배양 2일 후이 정지기 초기에 가 장 많이 생산되는 결과와 유사하였다[3,13].

기전에 따른 유류의 분해능 특성

분리된 군주의 탄소원의 종류에 따른 유류분해 특성을 조 사하기에 탄소수의 차이가 있는 기전을 사용하였다. Benzene, toluene, xylene 및 n-alkane (C_{13})의 가지 다른 탄화수소 10ml C-배지에 0.1%(v/v) 정량하여 5일간 진탕배양한 후 KCL-2 군주의 생육정도를 나타낸 결과는 Fig. 5와 같다. KCL-2 군주는 n-alkane제거 C_{13}와 C_{6} 사이에서 양성하게 생육하였고, benzene, toluene과 탄소수 비교적 적은 n-alkane C_{13}는 어느 생육이 거의 없었으며, xylene에서는 생육이 전혀 없었다. 또한, Klebsiella pneumoniae (L25) 도 hexadecane (C_{16}) 및 octane (C_{8})을 기질로서 이용하지 못하였다[8]. Klebsiella sp. KCL-2 군주는 비교적 적은 탄화수소 C_{8} 이상을 탄소원으로 이용하는 것을 알 수 있었다. Lee 등이 보고한 유류분해 해양세균인 Acanthobacter sp. 군주도 C_{17} 및 C_{14}를 잘 이용하는 것으로 보고된 바 있다[10].

KCL-2 군주의 crude oil 분해능을 측정시킬 수 있는 인 자를 탐색하기 위하여, 10ml의 C-배지에 n-alkane (C_{13})에서 C_{6} 가지의 각각 다른 탄화수소가 크기로 동시에 첨가하여 5일간 진탕배양시킨 후 군체의 성장을 600nm

304 / 생명과학저널
유류오염 지역에서 분리된 Klebsiella sp. KCL-2에 의한 유류분해 특성

Fig. 5. Effects of carbon sources on crude oil degradation by *Klebsiella* sp.
KCL-2(B) in C-medium at 37°C for 5 days.

에서 흡광도를 측정한 결과, C₆에서 가장 향성을 지녀 유류분해능은 chloro-
reform-methanol(2:1 v/v) 추출법으로 측정하여 대조군
(균제 무정가)의 상태 증강비로 나타내었다. n-Alkane계
탄화수소 C₆와 C₈에서 가장 향성을 고정연화도를 나타내었
으나, C₆, C₈ 및 C₉ 에서는 균주의 유용성이 느린 것으로
나타났다(이하표). 이러한 결과는 KCL-2군수가 탄수화물의
유일한 탄소원으로 C₈에서도 고정연화성이 향상하였기 때문에
crude oil과 동시에가하여 배양하였을 경우에 균체량의 증
가에 의해 배양액중의 C₈량이 감소하기 시작하면서 탄
소원으로 원유를 이용하는데 원유 분해능이 증가한 것으
로 사료되었다. 또한, C₉을 0〜150μg/30 mL C-매지에 첨가
시킨 상태에서 crude oil 분해능을 검토한 결과에서도 양
가능을 의심적으로 원유 분해능이 증가하여 이러한 결과를
다음 기저에제었다.

요 정

원유 분해능이 강력한 해양균주를 얻고자 유류오염 지역
으로부터 crude oil을 탄소원으로 이용하는 수실 중을
분리하였다. 분리된 균주를 원유분해능 및 성장속도면에서
가장 우수한 균주를 선별하여 KCL-2로 명명하였으며, 형
태학적, 생화학적 및 생리학적 특성을 조사한 후 *Klebsiella*
sp.로 등장하였다. KCL-2 균주의 원유 분해능을 위한 최적
배양조건은 배양온도 27°C〜37°C였으며, 초기 pH는 7.0이

또한, 이 균주의 성장은 3.0% 염분농도에서 최대의
성장을 보여주어 해양유래의 균주임을 확인하였다. 비교적
장세인 n-Alkane계 탄화수소의 C₆〜C₈의 탄화수소를 탄소
원으로 이용하였다. 원유분해성 C₈의 첨가에 의해 고정연화
및 원유 분해능이 증진되는 것으로 나타났다. KCL-2 균주
의 유화활성은 32°C, pH 7.0의 배양조건에서 대양 3일자에
가장 높게 나타났다.

감사의 글

본 연구는 한국과학기술원 지정 동아대학교 지능형 통합
항만관리 연구센터 및 대우화학공업주식회사의 지원에
하여 이루어진 연구결과의 일부로서 이에 감사드립니다.

참고 문헌

1. Choi, S. Y., C. S. Kim, M. H. Lee, M. O. Hwang and
K. H. Min. 1991. Octane biodegradability by crude
oil-utilizing bacteria carrying OCT plasmid.. *Kor. J.
Observations on microbial percent respiration values
in arctic and subarctic marine waters and sediments.
J. Ahn. 1999. Surface activity and environmental char-
acteristics of biosurfactant produced by *Pseudomonas
27*, 159-165.
Berger's manual of systematic bacteriology (9th ed.)
Williams and Wilkins, Baltimore.
5. Kim, H. J., B. J. Kim, S. D. Ha, S. H. Hwang and J.
Y. Kong. 1999. Degradation of crude oil and pur-
fication of biosurfactant from marine bacterium
14, 192-197.
and purification of biosurfactant from marine bac-
Bioeng.* 24, 443-448.